ﻻ يوجد ملخص باللغة العربية
In cosmological N-body simulations, the baryon effects on the cold dark matter (CDM) halos can be used to solve the small scale problems in $Lambda$CDM cosmology, such as cusp-core problem and missing satellites problem. It turns out that the resultant total density profiles (baryons plus CDM), for halos with mass ranges from dwarf galaxies to galaxy clusters, can match the observations of the rotation curves better than NFW profile. In our previous work, however, we found that such density profiles fail to match the most recent strong gravitational lensing observations. In this paper, we do the converse: we fit the most recent strong lensing observations with the predicted lensing probabilities based on the so-called $(alpha,beta,gamma)$ double power-law profile, and use the best-fit parameters ($alpha=3.04, beta=1.39, gamma=1.88$) to calculate the rotation curves. We find that, at outer parts for a typical galaxy, the rotation curve calculated with our fitted density profile is much lower than observations and those based on simulations, including the NFW profile. This again verifies and strengthen the conclusions in our previous works: in $Lambda$CDM paradigm, it is difficult to reconcile the contradictions between the observations for rotation curves and strong gravitational lensing.
We study the evolutionary trend of the total density profile of early-type galaxies (ETGs) in IllustrisTNG. To this end, we trace ETGs from $z=0$ to $z=4$ and measure the power-law slope $gamma^{prime}$ of the total density profile for their main pro
Simulations are expected to be the powerful tool to investigate the baryon effects on dark matter (DM) halos. Recent high resolution, cosmological hydrodynamic simulations (citealt{Cintio14}, DC14) predict that the inner density profiles of DM halos
We present a detailed strong lensing (SL) mass reconstruction of the core of the galaxy cluster MACSJ 2129.4-0741 ($rm z_{cl}=0.589$) obtained by combining high-resolution HST photometry from the CLASH survey with new spectroscopic observations from
We use the statistics of strong gravitational lenses to investigate whether mass profiles with a flat density core are supported. The probability for lensing by halos modeled by a nonsingular truncated isothermal sphere (NTIS) with image separations
We present a parametric strong lensing modeling of the galaxy cluster MS,0440.5+0204 (located at $z$ = 0.19). We have performed a strong lensing mass reconstruction of the cluster using three different models. The first model uses the image positions