ﻻ يوجد ملخص باللغة العربية
The rapidly evolving dust and gas extinction observed towards WD 1145+017 has opened a real-time window onto the mechanisms for destruction-accretion of planetary bodies onto white dwarf stars, and has served to underline the importance of considering the dynamics of dust particles around such objects. Here it is argued that the interaction between (charged) dust grains and the stellar magnetic field is an important ingredient in understanding the physical distribution of infrared emitting particles in the vicinity of such white dwarfs. These ideas are used to suggest a possible model for WD 1145+017 in which the unusual transit shapes are caused by opaque clouds of dust trapped in the stellar magnetosphere. The model can account for the observed transit periodicities if the stellar rotation is near 4.5 h, as the clouds of trapped dust are then located near or within the co-rotation radius. The model requires the surface magnetic field to be at least around some tens of kG. In contrast to the eccentric orbits expected for large planetesimals undergoing tidal disintegration, the orbits of magnetospherically-trapped dust clouds are essentially circular, consistent with the observations.
WD 1145+017 is a unique white dwarf system that has a heavily polluted atmosphere, an infrared excess from a dust disk, numerous broad absorption lines from circumstellar gas, and changing transit features, likely from fragments of an actively disint
WD 1145+017 is currently the only white dwarf known to exhibit periodic transits of planetary debris as well as absorption lines from circumstellar gas. We present the first simultaneous fast optical spectrophotometry and broad-band photometry of the
We have obtained extensive photometric observations of the polluted white dwarf WD 1145+017 which has been reported to be transited by at least one, and perhaps several, large asteroids (or, planetesimals) with dust emission. We have carried out 53 o
More than a decade after astronomers realized that disrupted planetary material likely pollutes the surfaces of many white dwarf stars, the discovery of transiting debris orbiting the white dwarf WD 1145+017 has opened the door to new explorations of
Multiple long and variable transits caused by dust from possibly disintegrating asteroids were detected in light curves of WD 1145+017. We present time-resolved spectroscopic observations of this target with QUCAM CCDs mounted in the Intermediate dis