ترغب بنشر مسار تعليمي؟ اضغط هنا

A deep X-ray view of the bare AGN Ark120. IV. XMM-Newton and NuSTAR spectra dominated by two temperature (warm, hot) Comptonization processes

56   0   0.0 ( 0 )
 نشر من قبل Delphine Porquet Dr.
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We perform an X-ray spectral analysis of the brightest and cleanest bare AGN known so far, Ark 120, in order to determine the process(es) at work in the vicinity of the SMBH. We present spectral analysis of data from an extensive campaign observing Ark 120 in X-rays with XMM-Newton (4$times$120 ks, 2014 March 18-24), and NuSTAR (65.5 ks, 2014 March 22). During this very deep X-ray campaign, the source was caught in a high flux state similar to the earlier 2003 XMM-Newton observation, and about twice as bright as the lower-flux observation in 2013. The spectral analysis confirms the softer when brighter behaviour of Ark 120. The four XMM-Newton/pn spectra are characterized by the presence of a prominent soft X-ray excess and a significant FeK$alpha$ complex. The continuum is very similar above about 3 keV, while significant variability is present for the soft X-ray excess. We find that relativistic reflection from a constant-density, flat accretion disk cannot simultaneously produce the soft excess, broad FeK$alpha$ complex, and hard X-ray excess. Instead, Comptonization reproduces the broadband (0.3-79 keV) continuum well, together with a contribution from a mildly relativistic disk reflection spectrum. During this 2014 observational campaign, the soft X-ray spectrum of Ark 120 below $sim$0.5 keV was found to be dominated by Comptonization of seed photons from the disk by a warm ($kT_{rm e}$$sim$0.5 keV), optically-thick corona ($tau$$sim$9). Above this energy, the X-ray spectrum becomes dominated by Comptonization from electrons in a hot optically thin corona, while the broad FeK$alpha$ line and the mild Compton hump result from reflection off the disk at several tens of gravitational radii.


قيم البحث

اقرأ أيضاً

[Abridged] In our previous work on Ark 120, we found that its 2014 X-ray spectrum is dominated by Comptonisation, while the relativistic reflection emission only originates at tens of $R_{rm g}$ from the SMBH. As a result, we could not constrain the SMBH spin from disc reflection alone. Our aim is to determine its SMBH spin from an alternative technique based on the global energetics of the disc-corona system. The spectral analysis uses simultaneous XMM-Newton (OM and pn) and NuSTAR observations on 2014 March 22 and 2013 February 18. We applied the optxconv model (based on optxagnf) to self consistently reproduce the emission from the inner corona (warm and hot thermal Comptonisation) and the outer disc (colour temperature corrected black body), taking into account both the disc inclination angle and relativistic effects. We modelled the mild relativistic reflection of the incident Comptonisation components using the xilconv model. We infer a SMBH spin of 0.83$^{+0.05}_{-0.03}$, adopting the SMBH reverberation mass of 1.50$times$10$^{8}$ M$_{odot}$. In addition, we find that the coronal radius decreases with increasing flux (by about a factor of two), from 85$^{+13}_{-10}$ $R_{rm g}$ in 2013 to 14$pm$3 $R_{rm g}$ in 2014. This is the first time that such a constraint is obtained for a SMBH spin from this technique, thanks to the bare properties of Ark 120, its well determined SMBH mass, and the presence of a mild relativistic reflection component in 2014 which allows us to constrain the disc inclination angle. We caution that these results depend on the detailed disc-corona structure, which is not yet fully established. However, the realistic parameter values found suggest that this is a promising method to determine spin in moderate accretion rate AGN.
We present results for two Ultraluminous X-ray Sources (ULXs), IC 342 X-1 and IC 342 X-2, using two epochs of XMM-Newton and NuSTAR observations separated by $sim$7 days. We observe little spectral or flux variability above 1 keV between epochs, with unabsorbed 0.3--30 keV luminosities being $1.04^{+0.08}_{-0.06} times 10^{40}$ erg s$^{-1}$ for IC 342 X-1 and $7.40pm0.20 times 10^{39}$ erg s$^{-1}$ for IC 342 X-2, so that both were observed in a similar, luminous state. Both sources have a high absorbing column in excess of the Galactic value. Neither source has a spectrum consistent with a black hole binary in low/hard state, and both ULXs exhibit strong curvature in their broadband X-ray spectra. This curvature rules out models that invoke a simple reflection-dominated spectrum with a broadened iron line and no cutoff in the illuminating power-law continuum. X-ray spectrum of IC 342 X-1 can be characterized by a soft disk-like black body component at low energies and a cool, optically thick Comptonization continuum at high energies, but unique physical interpretation of the spectral components remains challenging. The broadband spectrum of IC 342 X-2 can be fit by either a hot (3.8 keV) accretion disk, or a Comptonized continuum with no indication of a seed photon population. Although the seed photon component may be masked by soft excess emission unlikely to be associated with the binary system, combined with the high absorption column, it is more plausible that the broadband X-ray emission arises from a simple thin blackbody disk component. Secure identification of the origin of the spectral components in these sources will likely require broadband spectral variability studies.
The spectral shape of the hard X-ray continuum of Active Galactic Nuclei (AGN) can be ascribed to inverse Compton scattering of optical/UV seed photons from the accretion disc by a hot corona of electrons. This physical process produces a polarizatio n signal which is strongly sensitive to the geometry of the scattering medium (i.e. the hot corona) and of the radiation field. MoCA (Monte Carlo code for Comptonisation in Astrophysics) is a versatile code which allows for different geometries and configurations to be tested for Compton scattering in compact objects. A single photon approach is considered as well as polarisation and Klein-Nishina effects. In this work, we selected four different geometries for the scattering electrons cloud above the accretion disc, namely an extended slab, an extended spheroid and two compact spheroids. We discuss the first application of the MoCA model to reproduce the hard X-ray primary continuum of the bare Seyfert 1 galaxy Ark 120, using different geometries for the hot corona above the accretion disc. We report on the spectral analysis of the simultaneous 2013 and 2014 XMM-Newton and NuSTAR observations of the source. A general agreement is found between the best fit values of the hot coronal parameters obtained with MoCA and the ones inferred using other Comptonisation codes from the literature. The expected polarization signal from the best fits with MoCA is then presented and discussed, in view of the launch in 2021 of the Imaging X-ray Polarimetry Explorer (IXPE). We find that none of the tested geometries for the hot corona (extended slab and extended/compact spheroids) can be statistically preferred, based on spectroscopy solely. In the future, an IXPE observation less than 1 Ms long will clearly distinguish between an extended slab or a spherical hot corona.
71 - I. Pillitteri 2019
[Abridged] We investigated the X-ray characteristics of the Class I YSO Elias 29 with joint XMM-Newton and NuSTAR observations of 300 ks and 450 ks, respectively. These are the first observations of a very young (<1 Myr) stellar object in a band enco mpassing simultaneously both soft and hard X-rays. In addition to the hot Fe complex at 6.7 keV, we observed fluorescent emission from Fe at $sim6.4$ keV, confirming the previous findings. The line at 6.4 keV is detected during quiescent and flaring states and its flux is variable. The equivalent width is found varying in the $approx 0.15--0.5$ keV range. These values make unrealistic a simple model with a centrally illuminated disk and suggest a role of the cavity containing Elias 29 and possibly reverberation processes that could occur in it. We observed two flares, with duration of 20 ks and 50 ks, respectively. We systematically observed an increase of $N_H$ during the flares of a factor five. This behavior has been observed during flares previously detected in Elias 29 with XMM-Newton and ASCA. The phenomenon hints that the flaring regions could be buried under the accretion streams and at high stellar latitudes, as the X-rays from flares pass through gas denser than the gas along the line of sight of the quiescent corona. In a different scenario, a contribution from scattered soft photons to the primary coronal emission could mimic a shallower $N_H$ in the quiescent spectrum. In the spectrum of the full NuSTAR exposure, we detect hard X-ray emission in the band $approx20-80$ keV in excess with respect to the thermal emission. The hard X-ray emission could be due to a population of energetic electrons accelerated by the magnetic field along the accretion streams. These particles could concur to pumping up the Fe fluorescence of cold Fe of the disk along with X-ray photons with $E>7.11$ keV.
The Seyfert 1 galaxy, Ark 120, is a prototype example of the so-called class of bare nucleus AGN, whereby there is no known evidence for the presence of ionized gas along the direct line of sight. Here deep ($>400$ ks exposure), high resolution X-ray spectroscopy of Ark 120 is presented, from XMM-Newton observations which were carried out in March 2014, together with simultaneous Chandra/HETG exposures. The high resolution spectra confirmed the lack of intrinsic absorbing gas associated with Ark 120, with the only X-ray absorption present originating from the ISM of our own Galaxy, with a possible slight enhancement of the Oxygen abundance required with respect to the expected ISM values in the Solar neighbourhood. However, the presence of several soft X-ray emission lines are revealed for the first time in the XMM-Newton RGS spectrum, associated to the AGN and arising from the He and H-like ions of N, O, Ne and Mg. The He-like line profiles of N, O and Ne appear velocity broadened, with typical FWHM widths of $sim5000$ km s$^{-1}$, whereas the H-like profiles are unresolved. From the clean measurement of the He-like triplets, we deduce that the broad lines arise from gas of density $n_{rm e}sim10^{11}$ cm$^{-3}$, while the photoionization calculations infer that the emitting gas covers at least 10 percent of $4pi$ steradian. Thus the broad soft X-ray profiles appear coincident with an X-ray component of the optical-UV Broad Line Region on sub-pc scales, whereas the narrow profiles originate on larger pc scales, perhaps coincident with the AGN Narrow Line Region. The observations show that Ark 120 is not intrinsically bare and substantial X-ray emitting gas exists out of our direct line of sight towards this AGN.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا