ﻻ يوجد ملخص باللغة العربية
Quantum mechanics postulates that any measurement influences the state of the investigated system. Here, by means of angle-, spin-, and time-resolved photoemission experiments and ab initio calculations we demonstrate how non-equal depopulation of the Dirac cone (DC) states with opposite momenta in V-doped and pristine topological insulators (TIs) created by a photoexcitation by linearly polarized synchrotron radiation (SR) is followed by the hole-generated uncompensated spin accumulation and the SR-induced magnetization via the spin-torque effect. We show that the photoexcitation of the DC is asymmetric, that it varies with the photon energy, and that it practically does not change during the relaxation. We find a relation between the photoexcitation asymmetry, the generated spin accumulation and the induced spin polarization of the DC and V 3d states. Experimentally the SR-generated in-plane and out-of-plane magnetization is confirmed by the $k_{parallel}$-shift of the DC position and by the splitting of the states at the Dirac point even above the Curie temperature. Theoretical predictions and estimations of the measurable physical quantities substantiate the experimental results.
We propose a hole-induced mechanism of spin-polarized current generation by circularly polarized synchrotron radiation and corresponding induced magnetization in magnetically-doped topological insulators Bi$_{1.37}$V$_{0.03}$Sb$_{0.6}$Te$_2$Se. Consi
Twin domains are naturally present in the topological insulator BiSe{} and affect strongly its properties. While studies of its behavior for ideal BiSe{} structure exist, little is known about their possible interaction with other defects. Extra info
Magnetic interaction with the gapless surface states in topological insulator (TI) has been predicted to give rise to a few exotic quantum phenomena. However, the effective magnetic doping of TI is still challenging in experiment. Using first-princip
We report magnetotransport measurements on magnetically doped (Bi,Sb)$_2$Te$_3$ films grown by molecular beam epitaxy. In Hallbar devices, logarithmic dependence on temperature and bias voltage are obseved in both the longitudinal and anomalous Hall
We combine low energy muon spin rotation (LE-$mu$SR) and soft-X-ray angle-resolved photoemission spectroscopy (SX-ARPES) to study the magnetic and electronic properties of magnetically doped topological insulators, (Bi,Sb)$_2$Te$_3$. We find that one