ترغب بنشر مسار تعليمي؟ اضغط هنا

Search for an excess of events in the Super-Kamiokande detector in the directions of the astrophysical neutrinos reported by the IceCube Collaboration

84   0   0.0 ( 0 )
 نشر من قبل Erin O'Sullivan
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the results of a search in the Super-Kamiokande (SK) detector for excesses of neutrinos with energies above a few GeV that are in the direction of the track events reported in IceCube. Data from all SK phases (SK-I through SK-IV) were used, spanning a period from April 1996 to April 2016 and corresponding to an exposure of 225 kilotonne-years . We considered the 14 IceCube track events from a data set with 1347 livetime days taken from 2010 to 2014. We use Poisson counting to determine if there is an excess of neutrinos detected in SK in a 10 degree search cone (5 degrees for the highest energy data set) around the reconstructed direction of the IceCube event. No significant excess was found in any of the search directions we examined. We also looked for coincidences with a recently reported IceCube multiplet event. No events were detected within a $pm$ 500 s time window around the first detected event, and no significant excess was seen from that direction over the lifetime of SK.

قيم البحث

اقرأ أيضاً

The IceCube Neutrino Observatory is a 1 km$^{3}$ detector currently taking data at the South Pole. One of the main strategies used to look for astrophysical neutrinos with IceCube is the search for a diffuse flux of high-energy neutrinos from unresol ved sources. A hard energy spectrum of neutrinos from isotropically distributed astrophysical sources could manifest itself as a detectable signal that may be differentiated from the atmospheric neutrino background by spectral measurement. This analysis uses data from the IceCube detector collected in its half completed configuration which operated between April 2008 and May 2009 to search for a diffuse flux of astrophysical muon neutrinos. A total of 12,877 upward going candidate neutrino events have been selected for this analysis. No evidence for a diffuse flux of astrophysical muon neutrinos was found in the data set leading to a 90 percent C.L. upper limit on the normalization of an $E^{-2}$ astrophysical $ u_{mu}$ flux of $8.9 times 10^{-9} mathrm{GeV cm^{-2} s^{-1} sr^{-1}}$. The analysis is sensitive in the energy range between $35 mathrm{TeV} - 7 mathrm{PeV}$. The 12,877 candidate neutrino events are consistent with atmospheric muon neutrinos measured from 332 GeV to 84 TeV and no evidence for a prompt component to the atmospheric neutrino spectrum is found.
94 - K. Abe , K. Haga , Y. Hayato 2016
We report the results from a search in Super-Kamiokande for neutrino signals coincident with the first detected gravitational wave events, GW150914 and GW151226, using a neutrino energy range from 3.5 MeV to 100 PeV. We searched for coincident neutri no events within a time window of $pm$500 seconds around the gravitational wave detection time. Four neutrino candidates are found for GW150914 and no candidates are found for GW151226. The remaining neutrino candidates are consistent with the expected background events. We calculated the 90% confidence level upper limits on the combined neutrino fluence for both gravitational wave events, which depends on event energy and topologies. Considering the upward going muon data set (1.6 GeV - 100 PeV) the neutrino fluence limit for each gravitational wave event is 14 - 37 (19 - 50) cm$^{-2}$ for muon neutrinos (muon antineutrinos), depending on the zenith angle of the event. In the other data sets, the combined fluence limits for both gravitational wave events range from 2.4$times 10^{4}$ to 7.0$times 10^{9}$ cm$^{-2}$.
The IceCube neutrino observatory has established the existence of a flux of high-energy astrophysical neutrinos inconsistent with the expectation from atmospheric backgrounds at a significance greater than $5sigma$. This flux has been observed in ana lyses of both track events from muon neutrino interactions and cascade events from interactions of all neutrino flavors. Searches for astrophysical neutrino sources have focused on track events due to the significantly better angular resolution of track reconstructions. To date, no such sources have been confirmed. Here we present the first search for astrophysical neutrino sources using cascades interacting in IceCube with deposited energies as small as 1 TeV. No significant clustering was observed in a selection of 263 cascades collected from May 2010 to May 2012. We show that compared to the classic approach using tracks, this statistically-independent search offers improved sensitivity to sources in the southern sky, especially if the emission is spatially extended or follows a soft energy spectrum. This enhancement is due to the low background from atmospheric neutrinos forming cascade events and the additional veto of atmospheric neutrinos at declinations $lesssim-30^circ$.
120 - Donglian Xu 2017
High-energy (TeV-PeV) cosmic neutrinos are expected to be produced in extremely energetic astrophysical sources such as active galactic nuclei. The IceCube Neutrino Observatory at the South Pole has recently detected a diffuse astrophysical neutrino flux. While the flux is consistent with all flavors of neutrinos being present, identification of tau neutrinos within the flux is yet to occur. Although tau neutrino production is thought to be low at the source, an equal fraction of neutrinos are expected at Earth due to averaged neutrino oscillations over astronomical distances. Above a few hundred TeV, tau neutrinos become resolvable in IceCube with negligible background from cosmic-ray induced atmospheric neutrinos. Identification of tau neutrinos within the observed flux is crucial to precise measurement of its flavor content, which could serve to test fundamental neutrino properties over extremely long baselines, and possibly shed light on new physics beyond the Standard Model. We present the analysis method and results from a recent search for astrophysical tau neutrinos in three years of IceCube data.
197 - E.Konishi 2011
It should be regarded that the confirmation of the maximum oscillation in neutrino oscillation through L/E analysis by Super-Kamiokande is a logical consequence of their establishment on the existence of neutrino oscillation through the analysis of t he zenith angle distribution for atmospheric neutrino events. In the present paper (Part1) with the computer numerical experiment, we examine the assumption made by Super-Kamiokande Collaboration that the direction of the incident neutrino is approximately the same as that of the produced lepton, which is the cornerstone in their L/E analysis, and we find this approximation does not hold even approximately. In a subsequent paper (Part2), we apply the results from Figures 16, 17, 18 and 19 to L/E analysis and conclude that one cannot obtain the maximum oscillation in L/E analysis in the single ring muon events due to quasi-elastic scattering reported by Super-Kamiokande which shows strongly the oscillation pattern from the neutrino oscillation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا