ﻻ يوجد ملخص باللغة العربية
We work out constraints imposed by channel duality and analyticity on tree-level amplitudes of four identical real scalars, with the assumptions of a linear spectrum of exchanged particles and Regge asymptotic behaviour. We reduce the requirement of channel duality to a countably infinite set of equations in the general case. We show that channel duality uniquely fixes the soft Regge behaviour of the amplitudes to that found in String theory, $(-s)^{2t}$. Specialising to the case of tachyonic external particles, we use channel duality to show that the amplitude can be any one in an infinite-dimensional parameter space, and present evidence that unitarity doesnt significantly reduce the dimension of the space of amplitudes.
We explore the space of consistent three-particle couplings in $mathbb Z_2$-symmetric two-dimensional QFTs using two first-principles approaches. Our first approach relies solely on unitarity, analyticity and crossing symmetry of the two-to-two scatt
We consider constraints on the S-matrix of any gapped, Lorentz invariant quantum field theory in 1 + 1 dimensions due to crossing symmetry and unitarity. In this way we establish rigorous bounds on the cubic couplings of a given theory with a fixed m
We consider constraints on the S-matrix of any gapped, Lorentz invariant quantum field theory in 3+1 dimensions due to crossing symmetry, analyticity and unitarity. We extremize cubic couplings, quartic couplings and scattering lengths relevant for t
We bootstrap the S-matrix of massless particles in unitary, relativistic two dimensional quantum field theories. We find that the low energy expansion of such S-matrices is strongly constrained by the existence of a UV completion. In the context of f
We consider the 2D S-matrix bootstrap in the presence of supersymmetry, $mathbb{Z}_2$ and $mathbb{Z}_4$ symmetry. At the boundary of the allowed S-matrix space we encounter well known integrable models such as the supersymmetric sine-Gordon and restr