ترغب بنشر مسار تعليمي؟ اضغط هنا

Automatic Liver Segmentation Using an Adversarial Image-to-Image Network

68   0   0.0 ( 0 )
 نشر من قبل Dong Yang
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Automatic liver segmentation in 3D medical images is essential in many clinical applications, such as pathological diagnosis of hepatic diseases, surgical planning, and postoperative assessment. However, it is still a very challenging task due to the complex background, fuzzy boundary, and various appearance of liver. In this paper, we propose an automatic and efficient algorithm to segment liver from 3D CT volumes. A deep image-to-image network (DI2IN) is first deployed to generate the liver segmentation, employing a convolutional encoder-decoder architecture combined with multi-level feature concatenation and deep supervision. Then an adversarial network is utilized during training process to discriminate the output of DI2IN from ground truth, which further boosts the performance of DI2IN. The proposed method is trained on an annotated dataset of 1000 CT volumes with various different scanning protocols (e.g., contrast and non-contrast, various resolution and position) and large variations in populations (e.g., ages and pathology). Our approach outperforms the state-of-the-art solutions in terms of segmentation accuracy and computing efficiency.



قيم البحث

اقرأ أيضاً

Recently image-to-image translation has received increasing attention, which aims to map images in one domain to another specific one. Existing methods mainly solve this task via a deep generative model, and focus on exploring the relationship betwee n different domains. However, these methods neglect to utilize higher-level and instance-specific information to guide the training process, leading to a great deal of unrealistic generated images of low quality. Existing methods also lack of spatial controllability during translation. To address these challenge, we propose a novel Segmentation Guided Generative Adversarial Networks (SGGAN), which leverages semantic segmentation to further boost the generation performance and provide spatial mapping. In particular, a segmentor network is designed to impose semantic information on the generated images. Experimental results on multi-domain face image translation task empirically demonstrate our ability of the spatial modification and our superiority in image quality over several state-of-the-art methods.
167 - Yihao Zhao , Ruihai Wu , Hao Dong 2020
Unpaired image-to-image translation is a class of vision problems whose goal is to find the mapping between different image domains using unpaired training data. Cycle-consistency loss is a widely used constraint for such problems. However, due to th e strict pixel-level constraint, it cannot perform geometric changes, remove large objects, or ignore irrelevant texture. In this paper, we propose a novel adversarial-consistency loss for image-to-image translation. This loss does not require the translated image to be translated back to be a specific source image but can encourage the translated images to retain important features of the source images and overcome the drawbacks of cycle-consistency loss noted above. Our method achieves state-of-the-art results on three challenging tasks: glasses removal, male-to-female translation, and selfie-to-anime translation.
Image clustering has recently attracted significant attention due to the increased availability of unlabelled datasets. The efficiency of traditional clustering algorithms heavily depends on the distance functions used and the dimensionality of the f eatures. Therefore, performance degradation is often observed when tackling either unprocessed images or high-dimensional features extracted from processed images. To deal with these challenges, we propose a deep clustering framework consisting of a modified generative adversarial network (GAN) and an auxiliary classifier. The modification employs Sobel operations prior to the discriminator of the GAN to enhance the separability of the learned features. The discriminator is then leveraged to generate representations as the input to an auxiliary classifier. An adaptive objective function is utilised to train the auxiliary classifier for clustering the representations, aiming to increase the robustness by minimizing the divergence of multiple representations generated by the discriminator. The auxiliary classifier is implemented with a group of multiple cluster-heads, where a tolerance hyper-parameter is used to tackle imbalanced data. Our results indicate that the proposed method significantly outperforms state-of-the-art clustering methods on CIFAR-10 and CIFAR-100, and is competitive on the STL10 and MNIST datasets.
130 - Xiabi Liu , Xin Duan 2019
Image co-segmentation is important for its advantage of alleviating the ill-pose nature of image segmentation through exploring the correlation between related images. Many automatic image co-segmentation algorithms have been developed in the last de cade, which are investigated comprehensively in this paper. We firstly analyze visual/semantic cues for guiding image co-segmentation, including object cues and correlation cues. Then we describe the traditional methods in three categories of object elements based, object regions/contours based, common object model based. In the next part, deep learning based methods are reviewed. Furthermore, widely used test datasets and evaluation criteria are introduced and the reported performances of the surveyed algorithms are compared with each other. Finally, we discuss the current challenges and possible future directions and conclude the paper. Hopefully, this comprehensive investigation will be helpful for the development of image co-segmentation technique.
Despite significant advances in image-to-image (I2I) translation with Generative Adversarial Networks (GANs) have been made, it remains challenging to effectively translate an image to a set of diverse images in multiple target domains using a pair o f generator and discriminator. Existing multimodal I2I translation methods adopt multiple domain-specific content encoders for different domains, where each domain-specific content encoder is trained with images from the same domain only. Nevertheless, we argue that the content (domain-invariant) features should be learned from images among all the domains. Consequently, each domain-specific content encoder of existing schemes fails to extract the domain-invariant features efficiently. To address this issue, we present a flexible and general SoloGAN model for efficient multimodal I2I translation among multiple domains with unpaired data. In contrast to existing methods, the SoloGAN algorithm uses a single projection discriminator with an additional auxiliary classifier, and shares the encoder and generator for all domains. As such, the SoloGAN model can be trained effectively with images from all domains such that the domain-invariant content representation can be efficiently extracted. Qualitative and quantitative results over a wide range of datasets against several counterparts and variants of the SoloGAN model demonstrate the merits of the method, especially for the challenging I2I translation tasks, i.e., tasks that involve extreme shape variations or need to keep the complex backgrounds unchanged after translations. Furthermore, we demonstrate the contribution of each component using ablation studies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا