ترغب بنشر مسار تعليمي؟ اضغط هنا

Partially Ionized Plasmas in Astrophysics

92   0   0.0 ( 0 )
 نشر من قبل Elena Khomenko
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Partially ionized plasmas are found across the Universe in many different astrophysical environments. They constitute an essential ingredient of the solar atmosphere, molecular clouds, planetary ionospheres and protoplanetary disks, among other environments, and display a richness of physical effects which are not present in fully ionized plasmas. This review provides an overview of the physics of partially ionized plasmas, including recent advances in different astrophysical areas in which partial ionization plays a fundamental role. We outline outstanding observational and theoretical questions and discuss possible directions for future progress.

قيم البحث

اقرأ أيضاً

In many astrophysical environments the plasma is only partially ionized, and therefore the interaction of charged and neutral particles may alter both the triggering of reconnection and its subsequent dynamical evolution. We derive the tearing mode m aximum growth rate for partially ionized plasmas in the cases of weak and strong coupling between the plasma and the neutrals. In addition, critical scalings for current sheet aspect ratios are presented in terms of Lundquist number and ion-neutral collision frequencies. In the decoupled regime the standard tearing mode is recovered with a small correction depending on the ion-neutral collision frequency; in the intermediate regime collisions with neutrals are shown to stabilize current sheets, resulting in larger critical aspect ratios for ideal tearing to occur. Nonetheless, the additional electron-neutral collisions, hidden in the definition of the Lundquist number, can shrink the critical aspect ratios below the fully ionized case. In the coupled regime, the growth rate depends on the density ratio between ions and neutrals through the collision frequency between these two species. These provide critical aspect ratios for which the tearing mode instability transitions from slow to ideal, that depend on the neutral-ion density ratio.
Magnetic reconnection has been intensively studied in fully ionized plasmas. However, plasmas are often partially ionized in astrophysical environments. The interactions between the neutral particles and ionized plasmas might strongly affect the reco nnection mechanisms. We review magnetic reconnection in partially ionized plasmas in different environments from theoretical, numerical, observational and experimental points of view. We focus on mechanisms which make magnetic reconnection fast enough to compare with observations, especially on the reconnection events in the low solar atmosphere. The heating mechanisms and the related observational evidence of the reconnection process in the partially ionized low solar atmosphere are also discussed. We describe magnetic reconnection in weakly ionized astrophysical environments, including the interstellar medium and protostellar disks. We present recent achievements about fast reconnection in laboratory experiments for partially ionized plasmas.
The interaction of partially ionized plasmas with an electromagnetic field is investigated using quantum statistical methods. A general statistical expression for the current density of a plasma in an electromagnetic field is presented and considered in the high field regime. Expressions for the collisional absorption are derived and discussed. Further, partially ionized plasmas are considered. Plasma Bloch equations for the description of bound-free transitions are given and the absorption coefficient as well as rate coefficients for multiphoton ionization are derived and numerical results are presented.
The effects of strong Coulomb correlations in dense three-dimensional electron-hole plasmas are studied by means of unbiased direct path integral Monte Carlo simulations. The formation and dissociation of bound states, such as excitons and bi-exciton s is analyzed and the density-temperature region of their appearance is identified. At high density, the Mott transition to the fully ionized metallic state (electron-hole liquid) is detected. Particular attention is paid to the influence of the hole to electron mass ratio $M$ on the properties of the plasma. Above a critical value of about M=80 formation of a hole Coulomb crystal was recently verified [Phys. Rev. Lett. {bf 95}, 235006 (2005)] which is supported by additional results. Results are related to the excitonic phase diagram of intermediate valent Tm[Se,Te], where large values of $M$ have been observed experimentally.
We investigate the nature of dissipative instability at the boundary (seen here as tangential discontinuity) between the viscous corona and the partially ionised prominence plasma in the incompressible limit. The importance of the partial ionisation is investigated in terms of the ionisation fraction. Matching the solutions for the transversal component of the velocity and total pressure at the interface between the prominence and coronal plasmas, we derive a dispersion relation whose imaginary part describes the evolution of the instability. Results are obtained in the limit of weak dissipation. Using simple analytical methods, we show that dissipative instabilities appear for flow speeds that are lower than the Kelvin-Helmholtz instability threshold. While viscosity tends to destabilise the plasma, the effect of partial ionisation (through the Cowling resistivity) will act towards stabilising the interface. For ionisation degrees closer to a neutral gas the interface will be unstable for larger values of equilibrium flow. The same principle is assumed when studying the appearance of instability at the interface between prominences and dark plumes. The unstable mode appearing in this case has a very small growth rate and dissipative instability cannot explain the appearance of flows in plumes. The present study improves our understanding of the complexity of dynamical processes at the interface of solar prominences and solar corona, and the role partial ionisation can have on the stability of the plasma. Our results clearly show that the problem of partial ionisation introduces new aspects of plasma stability with consequences on the evolution of solar prominences.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا