ﻻ يوجد ملخص باللغة العربية
We propose an effective conformal field theory (CFT) description of steady state incompressible fluid turbulence at the inertial range of scales in any number of spatial dimensions. We derive a KPZ-type equation for the anomalous scaling of the longitudinal velocity structure functions and relate the intermittency parameter to the boundary Euler (A-type) conformal anomaly coefficient. The proposed theory consists of a mean field CFT that exhibits Kolmogorov linear scaling (K41 theory) coupled to a dilaton. The dilaton is a Nambu-Goldstone gapless mode that arises from a spontaneous breaking due to the energy flux of the separate scale and time symmetries of the inviscid Navier-Stokes equations to a K41 scaling with a dynamical exponent $z=frac{2}{3}$. The dilaton acts as a random measure that dresses the K41 theory and introduces intermittency. We discuss the two, three and large number of space dimensions cases and how entanglement entropy can be used to characterize the intermittency strength.
We argue that when conformal symmetry is spontaneously broken the trace anomalies in the broken and unbroken phases are matched. This puts strong constraints on the various couplings of the dilaton. Using the uniqueness of the effective action for th
We consider the statistical description of steady state fully developed incompressible fluid turbulence at the inertial range of scales in any number of spatial dimensions. We show that turbulence statistics is scale but not conformally covariant, wi
A formulation of $mathcal{N} = 2$ supersymmetric Yang-Mills theory with a spacetime-dependent gauge coupling allows to study the breaking of conformal symmetry at the quantum level. The theory has an energy-momentum tensor that is only conserved if a
Weyl invariant theories of scalars and gravity can generate all mass scales spontaneously, initiated by a dynamical process of inertial spontaneous symmetry breaking that does not involve a potential. This is dictated by the structure of the Weyl cur
Over half century ago Carl Brans participated in the construction of a viable deformation of the Einstein gravity theory. Their suggestion involves expanding the tensor-based theory by a scalar field. But experimental support has not materialized. Ne