ترغب بنشر مسار تعليمي؟ اضغط هنا

Spontaneous Symmetry Breaking, Conformal Anomaly and Incompressible Fluid Turbulence

302   0   0.0 ( 0 )
 نشر من قبل Yaron Oz
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Yaron Oz




اسأل ChatGPT حول البحث

We propose an effective conformal field theory (CFT) description of steady state incompressible fluid turbulence at the inertial range of scales in any number of spatial dimensions. We derive a KPZ-type equation for the anomalous scaling of the longitudinal velocity structure functions and relate the intermittency parameter to the boundary Euler (A-type) conformal anomaly coefficient. The proposed theory consists of a mean field CFT that exhibits Kolmogorov linear scaling (K41 theory) coupled to a dilaton. The dilaton is a Nambu-Goldstone gapless mode that arises from a spontaneous breaking due to the energy flux of the separate scale and time symmetries of the inviscid Navier-Stokes equations to a K41 scaling with a dynamical exponent $z=frac{2}{3}$. The dilaton acts as a random measure that dresses the K41 theory and introduces intermittency. We discuss the two, three and large number of space dimensions cases and how entanglement entropy can be used to characterize the intermittency strength.



قيم البحث

اقرأ أيضاً

We argue that when conformal symmetry is spontaneously broken the trace anomalies in the broken and unbroken phases are matched. This puts strong constraints on the various couplings of the dilaton. Using the uniqueness of the effective action for th e Goldstone supermultiplet for broken ${cal N}=1$ superconformal symmetry the dilaton effective action is calculated.
102 - Yaron Oz 2018
We consider the statistical description of steady state fully developed incompressible fluid turbulence at the inertial range of scales in any number of spatial dimensions. We show that turbulence statistics is scale but not conformally covariant, wi th the only possible exception being the direct enstrophy cascade in two space dimensions. We argue that the same conclusions hold for compressible non-relativistic turbulence as well as for relativistic turbulence. We discuss the modification of our conclusions in the presence of vacuum expectation values of negative dimension operators. We consider the issue of non-locality of the stress-energy tensor of inertial range turbulence field theory.
145 - Marc Gillioz 2017
A formulation of $mathcal{N} = 2$ supersymmetric Yang-Mills theory with a spacetime-dependent gauge coupling allows to study the breaking of conformal symmetry at the quantum level. The theory has an energy-momentum tensor that is only conserved if a n equation of motion for the coupling is imposed. It admits non-trivial solitons, among which the Wu-Yang monopole that can be regularized and turns out to be massless. On the other hand, the ordinary BPS monopole is only a solution in the large $N_c$ limit.
Weyl invariant theories of scalars and gravity can generate all mass scales spontaneously, initiated by a dynamical process of inertial spontaneous symmetry breaking that does not involve a potential. This is dictated by the structure of the Weyl cur rent, $K_mu$, and a cosmological phase during which the universe expands and the Einstein-Hilbert effective action is formed. Maintaining exact Weyl invariance in the renormalised quantum theory is straightforward when renormalisation conditions are referred back to the VEVs of fields in the action of the theory, which implies a conserved Weyl current. We do not require scale invariant regulators. We illustrate the computation of a Weyl invariant Coleman-Weinberg potential.
222 - R. Jackiw , S.Y. Pi 2015
Over half century ago Carl Brans participated in the construction of a viable deformation of the Einstein gravity theory. Their suggestion involves expanding the tensor-based theory by a scalar field. But experimental support has not materialized. Ne vertheless the model continues to generate interest and new research. The reasons for the current activity is described in this essay, which is dedicated to Carl Brans on his eightieth birthday.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا