ﻻ يوجد ملخص باللغة العربية
The GEp-III and GEp-2$gamma$ experiments, carried out in Jefferson Labs Hall C from 2007-2008, consisted of measurements of polarization transfer in elastic electron-proton scattering at momentum transfers of $Q^2 = 2.5, 5.2, 6.8,$ and $8.54$ GeV$^2$. These measurements were carried out to improve knowledge of the proton electromagnetic form factor ratio $R = mu_p G_E^p/G_M^p$ at large values of $Q^2$ and to search for effects beyond the Born approximation in polarization transfer observables at $Q^2 = 2.5$ GeV$^2$. The final results of both experiments were reported in a recent archival publication. A full reanalysis of the data from both experiments was carried out in order to reduce the systematic and, for the GEp-2$gamma$ experiment, statistical uncertainties. This technical note provides additional details of the final analysis omitted from the main publication, including the final evaluation of the systematic uncertainties.
Among the most fundamental observables of nucleon structure, electromagnetic form factors are a crucial benchmark for modern calculations describing the strong interaction dynamics of the nucleons quark constituents; indeed, recent proton data have a
Systematic differences in the the protons charge radius, as determined by ordinary atoms and muonic atoms, have caused a resurgence of interest in elastic lepton scattering measurements. The protons charge radius, defined as the slope of the charge f
Virtual Compton Scattering (VCS) on the proton has been studied at Jefferson Lab using the exclusive photon electroproduction reaction (e p --> e p gamma). This paper gives a detailed account of the analysis which has led to the determination of the
The $e^{+}p$ and $e^{-}p$ scattering data recorded at HERA during the recent years offer the possibility to study electroweak effects in $ep$ interactions apparent at high momentum transfers, $Q^{2}$, and to reveal information on the proton parton de