ﻻ يوجد ملخص باللغة العربية
Recently emerged layered transition metal dichalcogenides have attracted great interest due to their intriguing fundamental physical properties and potential applications in optoelectronics. Using scattering-type scanning near-field optical microscope (s-SNOM) and theoretical modeling, we study propagating surface waves in the visible spectral range that are excited at sharp edges of layered transition metal dichalcogenides (TMDC) such as molybdenum disulfide and tungsten diselenide. These surface waves form fringes in s-SNOM measurements. By measuring how the fringes change when the sample is rotated with respect to the incident beam, we obtain evidence that exfoliated MoS2 on a silicon substrate supports two types of Zenneck surface waves that are predicted to exist in materials with large real and imaginary parts of the permittivity. We have compared MoS2 interference fringes with those formed on layered insulator such as hexagonal boron nitride where only leaky modes are possible due to its small permittivity. Interpretation of experimental data is supported by theoretical models. Our results could pave the way to the investigation of surface waves on TMDCs and other van der Waals materials and their novel photonics applications.
State-of-the-art fabrication and characterization techniques have been employed to measure the thermal conductivity of suspended, single-crystalline MoS2 and MoS2/hBN heterostructures. Two-laser Raman scattering thermometry was used combined with rea
Modifying phonon thermal conductivity in nanomaterials is important not only for fundamental research but also for practical applications. However, the experiments on tailoring the thermal conductivity in nanoscale, especially in two-dimensional mate
We report the fabrication of ionic liquid (IL) gated field-effect transistors (FETs) consisting of bilayer and few-layer MoS2. Our transport measurements indicate that the electron mobility about 60 cm2V-1s-1 at 250 K in ionic liquid gated devices ex
Micromechanically exfoliated mono- and multilayers of molybdenum disulfide (MoS2) are investigated by spectroscopic imaging ellipsometry. In combination with knife edge illumination, MoS2 flakes can be detected and classified on arbitrary flat and al
The two-dimensional semiconductor MoS2 in its mono- and few-layer form is expected to have a significant exciton binding energy of several 100 meV, leading to the consensus that excitons are the primary photoexcited species. Nevertheless, even single