ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic properties of monoclinic lanthanide metaborates, $Ln$(BO$_2$)$_3$, $Ln$ = Pr, Nd, Gd, Tb

92   0   0.0 ( 0 )
 نشر من قبل Paromita Mukherjee
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The bulk magnetic properties of the lanthanide metaborates, $Ln$(BO$_2$)$_3$, $Ln$ = Pr, Nd, Gd, Tb are studied using magnetic susceptibility, heat capacity and isothermal magnetisation measurements. They crystallise in a monoclinic structure containing chains of magnetic $Ln^{3+}$ and could therefore exhibit features of low-dimensional magnetism and frustration. Pr(BO$_2$)$_3$ is found to have a non-magnetic singlet ground state. No magnetic ordering is observed down to 0.4 K for Nd(BO$_2$)$_3$. Gd(BO$_2$)$_3$ exhibits a sharp magnetic transition at 1.1 K, corresponding to three-dimensional magnetic ordering. Tb(BO$_2$)$_3$ shows two magnetic ordering features at 1.05 K and 1.95 K. A magnetisation plateau at a third of the saturation magnetisation is seen at 2 K for both Nd(BO$_2$)$_3$ and Tb(BO$_2$)$_3$ which persists in an applied field of 14 T. This is proposed to be a signature of quasi one-dimensional behaviour in Nd(BO$_2$)$_3$ and Tb(BO$_2$)$_3$.

قيم البحث

اقرأ أيضاً

105 - P Mukherjee , Y Wu , G I Lampronti 2017
The lanthanide orthoborates, $Ln$BO$_3$, $Ln$ = Gd, Tb, Dy, Ho, Er, Yb crystallise in a monoclinic structure with the magnetic $Ln^{3+}$ forming an edge-sharing triangular lattice. The triangles are scalene, however all deviations from the ideal equi lateral geometry are less than 1.5%. The bulk magnetic properties are studied using magnetic susceptibility, specific heat and isothermal magnetisation measurements. Heat capacity measurements show ordering features at $T leq$ 2 K for $Ln$ = Gd, Tb, Dy, Er. No ordering is observed for YbBO$_3$ at $T geq$ 0.4 K and HoBO$_3$ is proposed to have a non-magnetic singlet state. Isothermal magnetisation measurements indicate isotropic Gd$^{3+}$ spins and strong single-ion anisotropy for the other $Ln^{3+}$. The change in magnetic entropy has been evaluated to determine the magnetocaloric effect in these materials. GdBO$_3$ and DyBO$_3$ are found to be competitive magnetocaloric materials in the liquid helium temperature regime.
The layered perovskite compounds are interesting due to their intriguing physical properties. In this article we report the structural, magnetic and dielectric properties of LnBaCuFeO5 (Ln=Nd, Eu, Gd, Ho and Yb). The structural parameters decrease fr om Nd to Yb due to the decrease in the ionic radii of the rare earth ions. An antiferromagnetic transition is observed for EuBaCuFeO5 near 120 K along with the glassy dynamics of the electric dipoles below 100 K. The magnetic transition is absent in other compounds, which may be due to the dominance of the magnetic moment of the rare earth ions. The dielectric constant does not show any anomaly, except in the case of HoBaCuFeO5 where it shows a weak frequency dependence around 54 K. These compounds show a significant enhancement of dielectric constant at high temperatures which have been attributed to Maxwell-Wagner effect. However, no significant magneto-dielectric coupling has been observed in these layered perovskites.
60 - A. Dittl , S. Krohns , J. Sebald 2010
The magnetic and thermodynamic properties of the complete Ln$_{2/3}$Cu$_3$Ti$_4$O$_{12}$ series were investigated. Here $Ln$ stands for the lanthanides La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, and Yb. %Most of the compounds were prepared as si ngle phase polycrystalline powder %without any traces of impurities. Marginal amounts of %impurities $(< 2%)$ were detected $Ln=$ Gd, Er, and Tm. %Significant amounts of impurity phases were found for $Ln=$ Ce and Yb. All the samples investigated crystallize in the space group $Imbar{3}$ with lattice constants that follow the lanthanide contraction. The lattice constant of the Ce compound reveals the presence of Ce$^{4+}$ leading to the composition Ce$_{1/2}$Cu$_3$Ti$_4$O$_{12}$. From magnetic susceptibility and electron-spin resonance experiments it can be concluded that the copper ions always carry a spin $S=1/2$ and order antiferromagnetically close to 25,K. The Curie-Weiss temperatures can approximately be calculated assuming a two-sublattice model corresponding to the copper and lanthanide ions, respectively. It seems that the magnetic moments of the heavy rare earths are weakly coupled to the copper spins, while for the light lanthanides no such coupling was found. The $4f$ moments remain paramagnetic down to the lowest temperatures, with the exception of the Tm compound, which indicates enhanced Van-Vleck magnetism due to a non-magnetic singlet ground state of the crystal-field split $4f$ manifold. From specific-heat measurements we accurately determined the antiferromagnetic ordering temperature and obtained information on the crystal-field states of the rare-earth ions. The heat-capacity results also revealed the presence of a small fraction of Ce$^{3+}$ in a magnetic $4f^1$ state.
Investigation of the oxygen-deficient 112-type ordered oxides of the type LnBaCoMnO5+delta (Ln = Nd, Eu) evidences certain unusual magnetic behavior at low temperatures, compared to the LnBaCo2O5+delta cobaltites. One observes that the substitution o f manganese for cobalt suppresses the ferromagnetic state and induces strong antiferromagnetic interactions. Importantly, NdBaCoMnO5.9 depicts a clear paramagnetic to antiferromagnetic type transition around 220 K, whereas for EuBaCoMnO5.7 one observes an unusual magnetic behavior below 177 K which consists of ferromagnetic regions embedded in an antiferromagnetic matrix. The existence of two sorts of crystallographic sites for Co/Mn and their mixed valence states favor the ferromagnetic interaction whereas antiferromagnetism originates from the Co3+-O-Co3+ and Mn4+-O-Mn4+ interactions. Unlike the parent compounds, the present Mn-substituted phases do not exhibit prominent magnetoresistance effects in the temperature range 75-400K.
A review of our investigations on single crystals of LnFeAsO1-xFx (Ln=La, Pr, Nd, Sm, Gd) and Ba1-xRbxFe2As2 is presented. A high pressure technique has been applied for the growth of LnFeAsO1-xFx crystals, while Ba1-xRbxFe2As2 crystals were grown us ing quartz ampoule method. Single crystals were used for electrical transport, structure, magnetic torque and spectroscopic studies. Investigations of the crystal structure confirmed high structural perfection and show less than full occupation of the (O, F) position in superconducting LnFeAsO1-xFx crystals. Resistivity measurements on LnFeAsO1-xFx crystals show a significant broadening of the transition in high magnetic fields, whereas the resistive transition in Ba1 xRbxFe2As2 simply shifts to lower temperature. Critical current density for both compounds is relatively high and exceeds 2x109 A/m2 at 15 K in 7 T. The anisotropy of magnetic penetration depth, measured on LnFeAsO1-xFx crystals by torque magnetometry is temperature dependent and apparently larger than the anisotropy of the upper critical field. Ba1-xRbxFe2As2 crystals are electronically significantly less anisotropic. Point-Contact Andreev-Reflection spectroscopy indicates the existence of two energy gaps in LnFeAsO1-xFx. Scanning Tunneling Spectroscopy reveals in addition to a superconducting gap, also some feature at high energy (~20 meV).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا