ﻻ يوجد ملخص باللغة العربية
The effect of metallicity on the granulation activity in stars is still poorly understood. Available spectroscopic parameters from the updated APOGEE-textit{Kepler} catalog, coupled with high-precision photometric observations from NASAs textit{Kepler} mission spanning more than four years of observation, make oscillating red giant stars in open clusters crucial testbeds. We determine the role of metallicity on the stellar granulation activity by discriminating its effect from that of different stellar properties such as surface gravity, mass, and temperature. We analyze 60 known red giant stars belonging to the open clusters NGC 6791, NGC 6819, and NGC 6811, spanning a metallicity range from [Fe/H] $simeq -0.09$ to $0.32$. The parameters describing the granulation activity of these stars and their $ u_mathrm{max}$, are studied by considering the different masses, metallicities, and stellar evolutionary stages. We derive new scaling relations for the granulation activity, re-calibrate existing ones, and identify the best scaling relations from the available set of observations. We adopted the Bayesian code DIAMONDS for the analysis of the background signal in the Fourier spectra of the stars. We performed a Bayesian parameter estimation and model comparison to test the different model hypotheses proposed in this work and in the literature. Metallicity causes a statistically significant change in the amplitude of the granulation activity, with a dependency stronger than that induced by both stellar mass and surface gravity. We also find that the metallicity has a significant impact on the corresponding time scales of the phenomenon. The effect of metallicity on the time scale is stronger than that of mass. A higher metallicity increases the amplitude of granulation and meso-granulation signals and slows down their characteristic time scales toward longer periods.
Context: The study of stellar structure and evolution depends crucially on accurate stellar parameters. The photometry from space telescopes has provided superb data that allowed asteroseismic characterisation of thousands of stars. However, typical
More than 1000 red giants have been observed by NASA/Kepler mission during a nearly continuous period of ~ 13 months. The resulting high-frequency resolution (< 0.03 muHz) allows us to study the granulation parameters of these stars. The granulation
Since the onset of the `space revolution of high-precision high-cadence photometry, asteroseismology has been demonstrated as a powerful tool for informing Galactic archaeology investigations. The launch of the NASA TESS mission has enabled seismic-b
The detection of oscillations with a mixed character in subgiants and red giants allows us to probe the physical conditions in their cores. With these mixed modes, we aim at determining seismic markers of stellar evolution. Kepler asteroseismic data
The granulation pattern that we observe on the surface of the Sun is due to hot plasma from the interior rising to the photosphere where it cools down, and descends back into the interior at the edges of granules. This is the visible manifestation of