ترغب بنشر مسار تعليمي؟ اضغط هنا

Chemical element transport in stellar evolution models

94   0   0.0 ( 0 )
 نشر من قبل Maurizio Salaris Prof.
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Stellar evolution computations provide the foundation of several methods applied to study the evolutionary properties of stars and stellar populations, both Galactic and extragalactic. The accuracy of the results obtained with these techniques is linked to the accuracy of the stellar models, and in this context the correct treatment of the transport of chemical elements is crucial. Unfortunately, in many respects calculations of the evolution of the chemical abundance profiles in stars are still affected by sometime sizable uncertainties. Here, we review the various mechanisms of element transport included in the current generation of stellar evolution calculations, how they are implemented, the free parameters and uncertainties involved, the impact on the models, and the observational constraints.



قيم البحث

اقرأ أيضاً

Integrated light from distant galaxies is often compared to stellar population models via the equivalent widths of spectral features--spectral indices--whose strengths rely on the abundances of one or more elements. Such comparisons hinge not only on the overall metal abundance but also on relative abundances. Studies have examined the influence of individual elements on synthetic spectra but little has been done to address similar issues in the stellar evolution models that underlie most stellar population models. Stellar evolution models will primarily be influenced by changes in opacities. In order to explore this issue in detail, twelve sets of stellar evolution tracks and isochrones have been created at constant heavy element mass fraction Z that self-consistently account for varying heavy element mixtures. These sets include scaled-solar, alpha-enhanced, and individual cases where the elements C, N, O, Ne, Mg, Si, S, Ca, Ti, and Fe have been enhanced above their scaled-solar values. The variations that arise between scaled-solar and the other cases are examined with respect to the H-R diagram and main sequence lifetimes.
We used a one-zone chemical evolution model to address the question of how many masses and metallicities are required in grids of massive stellar models in order to ensure reliable galactic chemical evolution predictions. We used a set of yields that includes seven masses between 13 and 30 Msun, 15 metallicities between 0 and 0.03 in mass fraction, and two different remnant mass prescriptions. We ran several simulations where we sampled subsets of stellar models to explore the impact of different grid resolutions. Stellar yields from low- and intermediate-mass stars and from Type Ia supernovae have been included in our simulations, but with a fixed grid resolution. We compared our results with the stellar abundances observed in the Milky Way for O, Na, Mg, Si, Ca, Ti, and Mn. Our results suggest that the range of metallicity considered is more important than the number of metallicities within that range, which only affects our numerical predictions by about 0.1 dex. We found that our predictions at [Fe/H] < -2 are very sensitive to the metallicity range and the mass sampling used for the lowest metallicity included in the set of yields. Variations between results can be as high as 0.8 dex, for any remnant mass prescription. At higher [Fe/H], we found that the required number of masses depends on the element of interest and on the remnant mass prescription. With a monotonic remnant mass prescription where every model explodes as a core-collapse supernova, the mass resolution induces variations of 0.2 dex on average. But with a remnant mass prescription that includes islands of non-explodability, the mass resolution can cause variations of about 0.2 to 0.7 dex depending on the choice of metallicity range. With such a prescription, explosive or non-explosive models can be missed if not enough masses are selected, resulting in over- or under-estimations of the mass ejected by massive stars.
Numerous physical aspects of stellar physics have been presented in Ses- sion 2 and the underlying uncertainties have been tentatively assessed. We try here to highlight some specific points raised after the talks and during the general discus- sion at the end of the session and eventually at the end of the workshop. A table of model uncertainties is then drawn with the help of the participants in order to give the state of the art in stellar modeling uncertainties as of July 2013.
In Pop III stellar models convection-induced mixing between H- and He-rich burning layers can induce a burst of nuclear energy and thereby substantially alter the subsequent evolution and nucleosynthesis in the first massive stars. We investigate H-H e shell and core interactions in 26 stellar evolution simulations with masses $15 - 140,mathrm{M}_{odot}$, using five sets of mixing assumptions. In 22 cases H-He interactions induce local nuclear energy release in the range $ sim 10^{9} - 10^{13.5},mathrm{L}_{odot}$. The luminosities on the upper end of this range amount to a substantial fraction of the layers internal energy over a convective advection timescale, indicating a dynamic stellar response that would violate 1D stellar evolution modelling assumptions. We distinguish four types of H-He interactions depending on the evolutionary phase and convective stability of the He-rich material. H-burning conditions during H-He interactions give $^{12}mathrm{C}/^{13}mathrm{C}$ ratios between $approx 1.5$ to $sim 1000$ and [C/N] ratios from $approx -2.3 $ to $approx 3$ with a correlation that agrees well with observations of CEMP-no stars. We also explore Ca production from hot CNO breakout and find the simulations presented here likely cannot explain the observed Ca abundance in the most Ca-poor CEMP-no star. We describe the evolution leading to H-He interactions, which occur during or shortly after core-contraction phases. Three simulations without a H-He interaction are computed to Fe-core infall and a $140,mathrm{M}_{odot}$ simulation becomes pair-unstable. We also discuss present modelling limitations and the need for 3D hydrodynamic models to fully understand these stellar evolutionary phases.
137 - Gregory A. Feiden 2015
Stellar evolution models are a cornerstone of young star astrophysics, which necessitates that they yield accurate and reliable predictions of stellar properties. Here, I review the current performance of stellar evolution models against young astrop hysical benchmarks and highlight recent progress incorporating non-standard physics, such as magnetic field and starspots, to explain observed deficiencies. While addition of these physical processes leads to improved agreement between models and observations, there are several fundamental limitations in our understanding about how these physical processes operate. These limitations inhibit our ability to form a coherent picture of the essential physics needed to accurately compute young stellar models, but provide rich avenues for further exploration.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا