ﻻ يوجد ملخص باللغة العربية
A laboratory experiment is suggested in which conditions similar to those in the plume ejecta from Enceladus and, perhaps, Europa are established. Using infrared spectroscopy and polarimetry, the experiment might identify possible bio-markers in differential measurements of water from the open-ocean, from hydrothermal vents, and abiotic water samples. Should the experiment succeed, large telescopes could be used to acquire sensitive infrared spectra of the plumes of Enceladus and Europa, as the satellites transit the bright planetary disks. The extreme technical challenges encountered in so doing are similar to those of solar imaging spectropolarimetry. The desired signals are buried in noisy data in the presence of seeing-induced image motion and a changing natural source. Some differential measurements used for solar spectropolarimetry can achieve S/N ratios of $10^5$ even in the presence of systematic errors two orders of magnitude larger. We review the techniques and likelihood of success of such an observing campaign with some of the worlds largest ground-based telescopes, as well as the long anticipated James Webb Space Telescope. We discuss the relative merits of the new 4m Daniel K. Inouye Solar Telescope, as well as the James Webb Space Telescope and larger ground-based observatories, for observing the satellites of giant planets. As seen from near Earth, transits of Europa occur regularly, but transits of Enceladus will begin again only in 2022.
The Earth viewed from outside the Solar system would be identified merely like a pale blue dot, as coined by Carl Sagan. In order to detect possible signatures of the presence of life on a second earth among several terrestrial planets discovered in
We present hemispherically resolved spectra of the surface of Europa from ~3.1--4.13 microns, which we obtained using the near infrared spectrometer NIRSPEC on the Keck II telescope. These include the first high-quality L-band spectra of the surface
In the preceding paper (Efroimsky 2017), we derived an expression for the tidal dissipation rate in a homogeneous near-spherical Maxwell body librating in longitude. Now, by equating this expression to the outgoing energy flux due to the vapour plume
The location of a repeat plume detected at Europa is found to be coincident with the strongest ionosphere detection made by Galileo radio occultation in 1997.
One objective of a lander mission to Jupiters icy moon Europa is to detect liquid water within 30 km as well as characterizing the subsurface ocean. In order to satisfy this objective, water within the ice shell must also be identified. Inductive ele