ﻻ يوجد ملخص باللغة العربية
Plasmonic hot carrier devices extract excited carriers from metal nanostructures before equilibration, and have the potential to surpass semiconductor light absorbers. However their efficiencies have so far remained well below theoretical limits, which necessitates quantitative prediction of carrier transport and energy loss in plasmonic structures to identify and overcome bottlenecks in carrier harvesting. Here, we present a theoretical and computational framework, Non-Equilibrium Scattering in Space and Energy (NESSE), to predict the spatial evolution of carrier energy distributions that combines the best features of phase-space (Boltzmann) and particle-based (Monte Carlo) methods. Within the NESSE framework, we bridge first-principles electronic structure predictions of plasmon decay and carrier collision integrals at the atomic scale, with electromagnetic field simulations at the nano- to mesoscale. Finally, we apply NESSE to predict spatially-resolved energy distributions of photo-excited carriers that impact the surface of experimentally realizable plasmonic nanostructures at length scales ranging from tens to several hundreds of nanometers, enabling first-principles design of hot carrier devices.
This work summarizes recent progress on the thermal transport properties of three-dimensional (3D) nanostructures, with an emphasis on experimental results. Depending on the applications, different 3D nanostructures can be prepared or designed to eit
Using the Greens dyad technique based on cuboidal meshing, we compute the electromagnetic field scattered by metal nanorods with high aspect ratio. We investigate the effect of the meshing shape on the numerical simulations. We observe that discretiz
We formulate and implement Helical DFT -- a self-consistent first principles simulation method for nanostructures with helical symmetries. Such materials are well represented in all of nanotechnology, chemistry and biology, and are expected to be ass
Metamaterials have recently established a new paradigm for enhanced light absorption in state-of-the-art photodetectors. Here, we demonstrate broadband, highly efficient, polarization-insensitive, and gate-tunable photodetection at room temperature i
We propose a novel scheme of photon upconversion based on harnessing the energy of plasmonic hot carriers. Low-energy photons excite hot electrons and hot holes in a plasmonic nanoparticle, which are then injected into an adjacent semiconductor quant