ترغب بنشر مسار تعليمي؟ اضغط هنا

High-$T_mathrm{c}$ superconductivity in undoped ThFeAsN

68   0   0.0 ( 0 )
 نشر من قبل Toni Shiroka
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Unlike the widely studied ReFeAsO series, the newly discovered iron-based superconductor ThFeAsN exhibits a remarkably high critical temperature of 30 K, without chemical doping or external pressure. Here we investigate in detail its magnetic and superconducting properties via muon-spin rotation/relaxation ($mu$SR) and nuclear magnetic resonance (NMR) techniques and show that ThFeAsN exhibits strong magnetic fluctuations, suppressed below 35 K, but no magnetic order. This contrasts strongly with the ReFeAsO series, where stoichiometric parent materials order antiferromagnetically and superconductivity appears only upon doping. The ThFeAsN case indicates that Fermi-surface modifications due to structural distortions and correlation effects are as important as doping in inducing superconductivity. The direct competition between antiferromagnetism and superconductivity, which in ThFeAsN (as in LiFeAs) occurs at already zero doping, may indicate a significant deviation of the $s$-wave superconducting gap in this compound from the standard $s^{pm}$ scenario.


قيم البحث

اقرأ أيضاً

We investigate theoretically the superconducting state of the undoped Fe-based superconductor ThFeAsN. Using input from $ab~initio$ calculations, we solve the Fermi-surface based, multichannel Eliashberg equations for Cooper-pair formation mediated b y spin and charge fluctuations, and by the electron-phonon interaction (EPI). Our results reveal that spin fluctuations alone, when coupling only hole-like with electron-like energy bands, can account for a critical temperature $T_c$ up to $sim7.5,mathrm{K}$ with an $s_{pm}$-wave superconducting gap symmetry, which is a comparatively low $T_c$ with respect to the experimental value $T_c^{mathrm{exp}}=30,mathrm{K}$. Other combinations of interaction kernels (spin, charge, electron-phonon) lead to a suppression of $T_c$ due to phase frustration of the superconducting gap. We qualitatively argue that the missing ingredient to explain the gap magnitude and $T_c$ in this material is the first-order correction to the EPI vertex. In the noninteracting state this correction adopts a form supporting the $s_{pm}$ gap symmetry, in contrast to EPI within Migdals approximation, i.e., EPI without vertex correction, and therefore it enhances tendencies arising from spin fluctuations.
The recently synthesized ThFeAsN iron-pnictide superconductor exhibits a $T_c$ of 30 K, the highest of the 1111-type series in absence of chemical doping. To understand how pressure affects its electronic properties, we carried out microscopic invest igations up to 3 GPa via magnetization, nuclear magnetic resonance, and muon-spin rotation experiments. The temperature dependence of the ${}^{75}$As Knight shift, the spin-lattice relaxation rates, and the magnetic penetration depth suggest a multi-band $s^{pm}$-wave gap symmetry in the dirty limit, while the gap-to-$T_c$ ratio $Delta/k_mathrm{B}T_c$ hints at a strong-coupling scenario. Pressure modulates the geometrical parameters, thus reducing $T_c$, as well as $T_m$, the temperature where magnetic-relaxation rates are maximized, both at the same rate of approximately -1.1 K/GPa. This decrease of $T_c$ with pressure is consistent with band-structure calculations, which relate it to the deformation of the Fe 3$d_{z^2}$ orbitals.
The iron arsenide RbFe_2As_2 with the ThCr_2Si_2-type structure is found to be a bulk superconductor with T_c=2.6 K. The onset of diamagnetism was used to estimate the upper critical field H_c2(T), resulting in dH_c2/dT=-1.4 T/K and an extrapolated H _c2(0)=2.5 T. As a new representative of iron pnictide superconductors, superconducting RbFe_2As_2 contrasts with BaFe_2As_2, where the Fermi level is higher and a magnetic instability is observed. Thus, the solid solution series (Rb,Ba)Fe_2As_2 is a promising system to study the crossover from superconductivity to magnetism.
448 - J. H. Kang 2020
Fe-based superconductors exhibit a diverse interplay between charge, orbital, and magnetic ordering1-4. Variations in atomic geometry affect electron hopping between Fe atoms5,6 and the Fermi surface topology, influencing magnetic frustration and the pairing mechanism through changes of orbital overlap and occupancies7-11. Here, we experimentally demonstrate a systematic approach to realize superconductivity without chemical doping in BaFe2As2, employing geometric design within an epitaxial heterostructure. We control both tetragonality and orthorhombicity in BaFe2As2 through superlattice engineering, which we experimentally find to induce superconductivity when the As-Fe-As bond angle approaches that in a regular tetrahedron. This approach of superlattice design could lead to insights into low dimensional superconductivity in Fe-based superconductors.
We have synthesized a novel europium bismuth sulfofluoride, Eu3Bi2S4F4, by solid-state reactions in sealed evacuated quartz ampoules. The compound crystallizes in a tetragonal lattice (space group I4/mmm, a = 4.0771(1) A, c = 32.4330(6) A, and Z = 2) , in which CaF2-type Eu3F4 layers and NaCl-like BiS2 bilayers stack alternately along the crystallographic c axis. There are two crystallographically distinct Eu sites, Eu(1) and Eu(2) at the Wyckoff positions 4e and 2a, respectively. Our bond-valence-sum calculation, based on the refined structural data, indicates that Eu(1) is essentially divalent, whilst Eu(2) has an average valence of +2.64(5). This anomalous Eu valence state is further confirmed and supported, respectively, by Mossbauer and magnetization measurements. The Eu3+ components donate electrons into the conduction bands that are mainly composed of Bi- 6px and 6py states. Consequently, the material itself shows metallic conduction, and superconducts at 1.5 K without extrinsic chemical doping.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا