ﻻ يوجد ملخص باللغة العربية
We reconsider the renormalizability of topological Yang-Mills field theories in (anti-)self-dual Landau gauges. By employing algebraic renormalization techniques we show that there is only one independent renormalization. Moreover, due to the rich set of Ward identities, we are able to obtain some important exact features of the (connected and one-particle irreducible) two-point functions. Specifically, we show that all two-point functions are tree-level exact.
Starting from a self-dual $SU(infty)$ Yang-Mills theory in $(2+2)$ dimensions, the Plebanski second heavenly equation is obtained after a suitable dimensional reduction. The self-dual gravitational background is the cotangent space of the internal tw
Recent works have explored non-perturbative effects due to the existence of (infinitesimal) Gribov copies in Yang-Mills-Chern-Simons theories in three Euclidean dimensions. In particular, the removal of such copies modify the gauge field propagator b
We classify super-symmetric solutions of the minimal $N=2$ gauged Euclidean supergravity in four dimensions. The solutions with anti-self-dual Maxwell field give rise to anti-self-dual Einstein metrics given in terms of solutions to the $SU(infty)$ T
We introduce a Skyrme type model with the target space being the 3-sphere S^3 and with an action possessing, as usual, quadratic and quartic terms in field derivatives. The novel character of the model is that the strength of the couplings of those t
We construct a new covariant action for flat self-dual gravity in four spacetime dimensions. The action has just one term, but when expanded around an appropriate background gives rise to a kinetic term and a cubic interaction. Upon imposing the ligh