ﻻ يوجد ملخص باللغة العربية
The existence of the Efimov effect is drastically affected by the dimensionality of the space in which the system is embedded. The effective spatial dimension containing an atomic cloud can be continuously modified by compressing it in one or two directions. In the present article we determine for a general $AAB$ system formed by two identical bosons $A$ and a third particle $B$ in the two-body unitary limit, the dimensionsality $D$ for which the Efimov effect can exist for different values of the mass ratio $mathpzc{A}=m_B/m_A$. In addition, we provide a prediction for the Efimov discrete scaling factor, ${rm exp},(pi/s)$, as a function of a wide range of values of $mathpzc{A}$ and $D$, which can be tested in experiments that can be realized with currently available technology.
We study a three-body system, formed by two identical heavy bosons and a light particle, in the Born-Oppenheimer approximation for an arbitrary dimension $D$. We restrict $D$ to the interval $2,<,D,<,4$, and derive the heavy-heavy $D$-dimensional eff
Efimov physics is drastically affected by the change of spatial dimensions. Efimov states occur in a tridimensional (3D) environment, but disappear in two (2D) and one (1D) dimensions. In this paper, dedicated to the memory of Prof. Faddeev, we will
The discrete Efimov scaling behavior, well-known in the low-energy spectrum of three-body bound systems for large scattering lengths (unitary limit), is identified in the energy dependence of atom-molecule elastic cross-section in mass imbalanced sys
We study a one-dimensional quantum problem of two particles interacting with a third one via a scale-invariant subcritically attractive inverse square potential, which can be realized, for example, in a mixture of dipoles and charges confined to one
We demonstrate the emergence of universal Efimov physics for interacting photons in cold gases of Rydberg atoms. We consider the behavior of three photons injected into the gas in their propagating frame, where a paraxial approximation allows us to c