ﻻ يوجد ملخص باللغة العربية
With an eye toward the precision physics of the LHC, such as the recent measurement of $M_W$ by the ATLAS Collaboration, we present here systematic studies relevant to the assessment of the expected size of multiple photon radiative effects in heavy gauge boson production with decay to charged lepton pairs. We use the new version 4.22 of ${cal KK}$MC-hh so that we have CEEX EW exact ${cal O}(alpha^2 L)$ corrections in a hadronic MC and control over the corresponding EW initial-final interference (IFI) effects as well. In this way, we illustrate the interplay between cuts of the type used in the measurement of $M_W$ at the LHC and the sizes of the expected responses of the attendant higher order corrections. We find that there are per cent to per mille level effects in the initial-state radiation, fractional per mille level effects in the IFI and per mille level effects in the over-all ${cal O}(alpha^2 L)$ corrections that any treatment of EW corrections at the per mille level should consider. Our results have direct applicability to current LHC experimental data analyses.
We present an improvement of the MC event generator Herwiri2, where we recall the latter MC was a prototype for the inclusion of CEEX resummed EW corrections in hadron-hadron scattering at high cms energies. In this improvement the new exact ${cal O}
${cal KK}$MC-hh is a precision event-generator for Z production and decay in hadronic collisions, which applies amplitude-level resummation to both initial and final state photon radiation, including perturbative residuals exact through ${cal O}(alph
We present the upgrade of the coherent exclusive (CEEX) exponentiation realization of the Yennie-Frautschi-Suura (YFS) theory used in our Monte Carlo ({cal KK} MC) to the processes fbar{f}rightarrow fbar{f}, f=mu,tau,q, u_ell, f=e,mu,tau,q, u_ell, q=
With an eye toward the precision physics of the LHC, FCC-ee and possible high energy muon colliders, we present the extension of the CEEX (coherent exclusive exponentiation) realization of the YFS approach to resummation in our KK MC to include the p
With an eye toward LHC processes in which theoretical precisions of 1 percent are desired, we introduce the theory of the simultaneous YFS resummation of QED and QCD to compute the size of the expected resummed soft radiative threshold effects in pre