ترغب بنشر مسار تعليمي؟ اضغط هنا

Machine Learning for Large-Scale Quality Control of 3D Shape Models in Neuroimaging

93   0   0.0 ( 0 )
 نشر من قبل Boris Gutman
 تاريخ النشر 2017
  مجال البحث علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

As very large studies of complex neuroimaging phenotypes become more common, human quality assessment of MRI-derived data remains one of the last major bottlenecks. Few attempts have so far been made to address this issue with machine learning. In this work, we optimize predictive models of quality for meshes representing deep brain structure shapes. We use standard vertex-wise and global shape features computed homologously across 19 cohorts and over 7500 human-rated subjects, training kernelized Support Vector Machine and Gradient Boosted Decision Trees classifiers to detect meshes of failing quality. Our models generalize across datasets and diseases, reducing human workload by 30-70%, or equivalently hundreds of human rater hours for datasets of comparable size, with recall rates approaching inter-rater reliability.



قيم البحث

اقرأ أيضاً

We present several deep learning models for assessing the morphometric fidelity of deep grey matter region models extracted from brain MRI. We test three different convolutional neural net architectures (VGGNet, ResNet and Inception) over 2D maps of geometric features. Further, we present a novel geometry feature augmentation technique based on a parametric spherical mapping. Finally, we present an approach for model decision visualization, allowing human raters to see the areas of subcortical shapes most likely to be deemed of failing quality by the machine. Our training data is comprised of 5200 subjects from the ENIGMA Schizophrenia MRI cohorts, and our test dataset contains 1500 subjects from the ENIGMA Major Depressive Disorder cohorts. Our final models reduce human rater time by 46-70%. ResNet outperforms VGGNet and Inception for all of our predictive tasks.
Ensuring the privacy of research participants is vital, even more so in healthcare environments. Deep learning approaches to neuroimaging require large datasets, and this often necessitates sharing data between multiple sites, which is antithetical t o the privacy objectives. Federated learning is a commonly proposed solution to this problem. It circumvents the need for data sharing by sharing parameters during the training process. However, we demonstrate that allowing access to parameters may leak private information even if data is never directly shared. In particular, we show that it is possible to infer if a sample was used to train the model given only access to the model prediction (black-box) or access to the model itself (white-box) and some leaked samples from the training data distribution. Such attacks are commonly referred to as Membership Inference attacks. We show realistic Membership Inference attacks on deep learning models trained for 3D neuroimaging tasks in a centralized as well as decentralized setup. We demonstrate feasible attacks on brain age prediction models (deep learning models that predict a persons age from their brain MRI scan). We correctly identified whether an MRI scan was used in model training with a 60% to over 80% success rate depending on model complexity and security assumptions.
Thanks to advancements in diagnosis and treatment, prostate cancer patients have high long-term survival rates. Currently, an important goal is to preserve quality-of-life during and after treatment. The relationship between the radiation a patient r eceives and the subsequent side effects he experiences is complex and difficult to model or predict. Here, we use machine learning algorithms and statistical models to explore the connection between radiation treatment and post-treatment gastro-urinary function. Since only a limited number of patient datasets are currently available, we used image flipping and curvature-based interpolation methods to generate more data in order to leverage transfer learning. Using interpolated and augmented data, we trained a convolutional autoencoder network to obtain near-optimal starting points for the weights. A convolutional neural network then analyzed the relationship between patient-reported quality-of-life and radiation. We also used analysis of variance and logistic regression to explore organ sensitivity to radiation and develop dosage thresholds for each organ region. Our findings show no connection between the bladder and quality-of-life scores. However, we found a connection between radiation applied to posterior and anterior rectal regions to changes in quality-of-life. Finally, we estimated radiation therapy dosage thresholds for each organ. Our analysis connects machine learning methods with organ sensitivity, thus providing a framework for informing cancer patient care using patient reported quality-of-life metrics.
141 - Alexandre Abraham 2014
Statistical machine learning methods are increasingly used for neuroimaging data analysis. Their main virtue is their ability to model high-dimensional datasets, e.g. multivariate analysis of activation images or resting-state time series. Supervised learning is typically used in decoding or encoding settings to relate brain images to behavioral or clinical observations, while unsupervised learning can uncover hidden structures in sets of images (e.g. resting state functional MRI) or find sub-populations in large cohorts. By considering different functional neuroimaging applications, we illustrate how scikit-learn, a Python machine learning library, can be used to perform some key analysis steps. Scikit-learn contains a very large set of statistical learning algorithms, both supervised and unsupervised, and its application to neuroimaging data provides a versatile tool to study the brain.
We present a dual-stage neural network architecture for analyzing fine shape details from microscopy recordings in 3D. The system, tested on red blood cells, uses training data from both healthy donors and patients with a congenital blood disease. Ch aracteristic shape features are revealed from the spherical harmonics spectrum of each cell and are automatically processed to create a reproducible and unbiased shape recognition and classification for diagnostic and theragnostic use.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا