ﻻ يوجد ملخص باللغة العربية
How smart can a micron-sized bag of chemicals be? How can an artificial or real cell make inferences about its environment? From which kinds of probability distributions can chemical reaction networks sample? We begin tackling these questions by showing four ways in which a stochastic chemical reaction network can implement a Boltzmann machine, a stochastic neural network model that can generate a wide range of probability distributions and compute conditional probabilities. The resulting models, and the associated theorems, provide a road map for constructing chemical reaction networks that exploit their native stochasticity as a computational resource. Finally, to show the potential of our models, we simulate a chemical Boltzmann machine to classify and generate MNIST digits in-silico.
Restricted Boltzmann Machines (RBMs) are a class of generative neural network that are typically trained to maximize a log-likelihood objective function. We argue that likelihood-based training strategies may fail because the objective does not suffi
A Boltzmann machine is a stochastic neural network that has been extensively used in the layers of deep architectures for modern machine learning applications. In this paper, we develop a Boltzmann machine that is capable of modelling thermodynamic o
The use of mathematical methods for the analysis of chemical reaction systems has a very long history, and involves many types of models: deterministic versus stochastic, continuous versus discrete, and homogeneous versus spatially distributed. Here
The restricted Boltzmann machine is a network of stochastic units with undirected interactions between pairs of visible and hidden units. This model was popularized as a building block of deep learning architectures and has continued to play an impor
The search for novel entangled phases of matter has lead to the recent discovery of a new class of ``entanglement transitions, exemplified by random tensor networks and monitored quantum circuits. Most known examples can be understood as some classic