ترغب بنشر مسار تعليمي؟ اضغط هنا

Andromedas Parachute: A Bright Quadruply Lensed Quasar at z=2.377

94   0   0.0 ( 0 )
 نشر من قبل Kate Rubin
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Kate H. R. Rubin




اسأل ChatGPT حول البحث

We present Keck Cosmic Web Imager spectroscopy of the four putative images of the lensed quasar candidate J014709+463037 recently discovered by Berghea et al. (2017). The data verify the source as a quadruply lensed, broad absorption-line quasar having z_S = 2.377 +/- 0.007. We detect intervening absorption in the FeII 2586, 2600, MgII 2796, 2803, and/or CIV 1548, 1550 transitions in eight foreground systems, three of which have redshifts consistent with the photometric-redshift estimate reported for the lensing galaxy (z_L ~ 0.57). By virtue of their positions on the sky, the source images probe these absorbers over transverse physical scales of ~0.3-21 kpc, permitting assessment of the variation in metal-line equivalent width W_r as a function of sight-line separation. We measure differences in W_r,2796 of <40% across all sight-line pairs subtending 7-21 kpc, suggestive of a high degree of spatial coherence for MgII-absorbing material. W_r,2600 is observed to vary by >50% over the same scales across the majority of sight-line pairs, while CIV absorption exhibits a wide range in W_r,1548 differences of ~5-80% within transverse distances less than ~3 kpc. J014709+463037 is one of only a handful of z > 2 quadruply lensed systems for which all four source images are very bright (r = 15.4-17.7 mag) and are easily separated in ground-based seeing conditions. As such, it is an ideal candidate for higher-resolution spectroscopy probing the spatial variation in the kinematic structure and physical state of intervening absorbers.

قيم البحث

اقرأ أيضاً

99 - Adriano Agnello 2018
The Southern Hemisphere has just recently begun to be charted by wide-field surveys, with a sufficient depth and image quality to enable the discovery of strongly lensed quasars. The quadruply imaged quasar WG0214-2105 (r.a.=02:14:16.37, dec.=-21:05: 35.3) is a previously unknown lens, with `blue mid-IR colors and high UV deficit, found in the intersection of three survey footprints: the Dark Energy Survey public DR1 (DES, Abbott et al. 2018), The VST-ATLAS (Shanks et al. 2015) and Pan-STARRS (Chambers et al. 2016). Its discovery relied on high spatial resolution from the Gaia mission (Lindegren et al. 2016) and mid-IR color preselection in the WISE catalog (Wright et al. 2010).
We report the quadruple nature of the source WISE 025942.9-163543 as observed in the VST-ATLAS survey. Spectra of the two brightest images show quasar emission lines at z=2.16. The system was discovered by splitting ATLAS cutouts of WISE sources with W1-W2 > 0.7, when possible, into three components. Followup Magellan images were used to obtain astrometry and g and i photometry, with i=18.78 and 19.73, respectively, for the brightest and faintest components. Absorption lines are observed at z=0.905 but there is little evidence for a lensing galaxy after PSF fitting and subtraction. Saha and Williams (2003) would classify ATLAS 0259-1635 as a short-axis quad. The larger and smaller diameters are 1.57 and 1.32 arcseconds, respectively. Modeling the lensing galaxy as a singular isothermal sphere with external shear, the largest and smallest predicted magnifications are 10.8 and 6.4 respectively.
Strong gravitational lensing provides a powerful probe of the physical properties of quasars and their host galaxies. A high fraction of the most luminous high-redshift quasars was predicted to be lensed due to magnification bias. However, no multipl e imaged quasar was found at z>5 in previous surveys. We report the discovery of J043947.08+163415.7, a strongly lensed quasar at z=6.51, the first such object detected at the epoch of reionization, and the brightest quasar yet known at z>5. High-resolution HST imaging reveals a multiple imaged system with a maximum image separation theta ~ 0.2, best explained by a model of three quasar images lensed by a low luminosity galaxy at z~0.7, with a magnification factor of ~50. The existence of this source suggests that a significant population of strongly lensed, high redshift quasars could have been missed by previous surveys, as standard color selection techniques would fail when the quasar color is contaminated by the lensing galaxy.
We report the discovery of a z_{phot}=6.18^{+0.05}_{-0.07} (95% confidence level) dwarf galaxy, lensed into four images by the galaxy cluster MACS J0329.6-0211 (z_{l}=0.45). The galaxy is observed as a high-redshift dropout in HST/ACS/WFC3 CLASH and Spitzer/IRAC imaging. Its redshift is securely determined due to a clear detection of the Lyman-break in the 18-band photometry, making this galaxy one of the highest-redshift multiply-lensed objects known to date with an observed magnitude of F125W=24.00pm0.04 AB mag for its highest-magnified image. We also present the first strong-lensing analysis of this cluster uncovering 15 additional multiply-imaged candidates of five lower-redshift sources spanning the range z_{s}~2-4. The mass model independently supports the high photometric redshift and reveals magnifications of 11.6^{+8.9}_{-4.1}, 17.6^{+6.2}_{-3.9}, 3.9^{+3.0}_{-1.7}, and 3.7^{+1.3}_{-0.2}, respectively, for the four images of the high-redshift galaxy. With this we construct a source image with a physical resolution of ~200 pc when the universe was ~0.9 Gyr old, where the z~6.2 galaxy occupies a source-plane area of approximately 2.2 kpc^{2}. Modeling the observed spectral energy distribution using population synthesis models, we find a demagnified stellar mass of ~10^{9} {M}_{sun}, subsolar metallicity (Z/Z_{sun}~0.5), low dust content (A_{V}~0.1 mag), a demagnified star formation rate (SFR) of ~3.2 {M}_{sun} yr^{-1}, and a specific SFR of ~3.4 Gyr^{-1}, all consistent with the properties of local dwarf galaxies.
We report the discovery of the quadruply lensed quasar J1433+6007, mined in the SDSS DR12 photometric catalogues using a novel outlier-selection technique, without prior spectroscopic or UV excess information. Discovery data obtained at the Nordic Op tical telescope (NOT, La Palma) show nearly identical quasar spectra at $z_s=2.74$ and four quasar images in a fold configuration, one of which sits on a blue arc. The deflector redshift is $z_{l}=0.407,$ from Keck-ESI spectra. We describe the selection procedure, discovery and follow-up, image positions and $BVRi$ magnitudes, and first results and forecasts from simple lens models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا