ﻻ يوجد ملخص باللغة العربية
The high-temperature normal state of the unconventional cuprate superconductors has resistivity linear in temperature $T$, which persists to values well beyond the Mott-Ioffe-Regel upper bound. At low-temperature, within the pseudogap phase, the resistivity is instead quadratic in $T$, as would be expected from Fermi liquid theory. Developing an understanding of these normal phases of the cuprates is crucial to explain the unconventional superconductivity. We present a simple explanation for this behavior, in terms of umklapp scattering of electrons. This fits within the general picture emerging from functional renormalization group calculations that spurred the Yang-Rice-Zhang ansatz: umklapp scattering is at the heart of the behavior in the normal phase.
Planar normal state resistivity data taken from three families of cuprate superconductors are compared with theoretical calculations from the recent extremely correlated Fermi liquid theory (ECFL). The two hole doped cuprate materials $LSCO$ and $BSL
We propose that Resistivity Curvature Mapping (RCM) based on the in-plane resistivity data is a useful way to objectively draw an electronic phase diagrams of high-T_c cuprates, where various crossovers are important. In particular, the pseudogap cro
We report the results of a muon spin rotation (muSR) study of the bulk of Bi{2+x}Sr{2-x}CaCu2O{8+delta}, as well as pure and Ca-doped YBa2Cu3Oy, which together with prior measurements reveal a universal inhomogeneous magnetic-field response of hole-d
We measure the temperature and frequency dependence of the complex Hall angle for normal state YBa$_2$Cu$_3$O$_7$ films from dc to far-infrared frequencies (20-250 cm$^{-1}$) using a new modulated polarization technique. We determine that the functio
We calculate scattering interference patterns for various electronic states proposed for the pseudogap regime of the cuprate superconductors. The scattering interference models all produce patterns whose wavelength changes as a function of energy, in