ترغب بنشر مسار تعليمي؟ اضغط هنا

Abundance ratios & ages of stellar populations in HARPS-GTO sample

94   0   0.0 ( 0 )
 نشر من قبل Elisa Delgado Mena
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work we present chemical abundances of heavy elements (Z$>$28) for a homogeneous sample of 1059 stars from HARPS planet search program. We also derive ages using parallaxes from Hipparcos and Gaia DR1 to compare the results. We study the [X/Fe] ratios for different populations and compare them with models of Galactic chemical evolution. We find that thick disk stars are chemically disjunt for Zn and Eu. Moreover, the high-alpha metal-rich population presents an interesting behaviour, with clear overabundances of Cu and Zn and lower abundances of Y and Ba with respect to thin disk stars. Several abundance ratios present a significant correlation with age for chemically separated thin disk stars (regardless of their metallicity) but thick disk stars do not present that behaviour. Moreover, at supersolar metallicities the trends with age tend to be weaker for several elements.



قيم البحث

اقرأ أيضاً

[ABRIDGED] The purpose of this work is to evaluate how several elements produced by different nucleosynthesis processes behave with stellar age and provide empirical relations to derive stellar ages from chemical abundances. We derive different sets of ages using Gaia parallaxes for a sample of more than 1000 FGK dwarf stars for which he have spectra from the HARPS-GTO program. We analyze the temporal evolution of different abundance ratios to find the best chemical clocks. We find that [$alpha$/Fe] ratio (average of Mg, Si and Ti), [O/Fe] and [Zn/Fe] are good age proxies with a lower dispersion than the age-metallicity dispersion. Several abundance ratios present a significant correlation with age for chemically separated thin disk stars (i.e. low-$alpha$) but in the case of the chemically defined thick disk stars (i.e. high-$alpha$) only the elements Mg, Si, Ca and TiII show a clear correlation with age. We find that the thick disk stars are more enriched in light-s elements than thin disk stars of similar age. The maximum enrichment of s-process elements in the thin disk occurs in the youngest stars which in turn have solar metallicity. The slopes of the [X/Fe]-age relations are quite constant for O, Mg, Si, Ti, Zn, Sr and Eu regardless of the metallicity. However, this is not the case for Al, Ca, Cu and most of the s-process elements, which display very different trends depending on the metallicity. This demonstrates the limitations of using simple linear relations based on certain abundance ratios to obtain ages for stars of different metallicities. Finally, we show that by using 3D relations with a chemical clock and two stellar parameters (either Teff, [Fe/H] or stellar mass) we can explain up to 89% of age variance in a star. A similar result is obtained when using 2D relations with a chemical clock and one stellar parameter, being up to a 87% of the variance explained.
[ABRIDGED]We study the carbon abundances with a twofold objective. On the one hand, we want to evaluate the behaviour of carbon in the context of Galactic chemical evolution. On the other hand, we focus on the possible dependence of carbon abundances on the presence of planets and on the impact of various factors (such as different oxygen lines) on the determination of C/O elemental ratios. We derived chemical abundances of carbon from two atomic lines for 757 FGK stars in the HARPS-GTO sample. The abundances were derived with the code MOOG using automatically measured EWs and a grid of Kurucz ATLAS9 atmospheres. Oxygen abundances, derived using different lines, were taken from previous papers in this series and updated with the new stellar parameters. We find that thick- and thin-disk stars are chemically disjunct for [C/Fe] across the full metallicity range that they have in common. Moreover, the population of high-$alpha$ metal-rich stars also presents higher and clearly separated [C/Fe] ratios than thin-disk stars up to [Fe/H],$sim$,0.2,dex. The [C/O] ratios present a general flat trend as a function of [O/H] but this trend becomes negative when considering stars of similar metallicity. We find tentative evidence that stars with low-mass planets at lower metallicities have higher [C/Fe] ratios than stars without planets at the same metallicity, in the same way as has previously been found for $alpha$ elements. Finally, the elemental C/O ratios for the vast majority of our stars are below 0.8 when using the oxygen line at 6158A however, the forbidden oxygen line at 6300A provides systematically higher C/O values. Moreover, by using different atmosphere models the C/O ratios can have a non negligible difference for cool stars. Therefore, C/O ratios should be scaled to a common solar reference in order to correctly evaluate its behaviour.
87 - E. R. Stanway 2020
The binary fraction of a stellar population can have pronounced effects on its properties, and in particular the number counts of different massive star types, and the relative subtype rates of the supernovae which end their lives. Here we use binary population synthesis models with a binary fraction that varies with initial mass to test the effects on resolved stellar populations and supernovae, and ask whether these can constrain the poorly-known binary fraction in different mass and metallicity regimes. We show that Wolf-Rayet star subtype ratios are valuable binary diagnostics, but require large samples to distinguish by models. Uncertainties in which stellar models would be spectroscopically classified as Wolf-Rayet stars are explored. The ratio of thermonuclear, stripped envelope and other core-collapse supernovae may prove a more accessible test and upcoming surveys will be sufficient to constrain both the high mass and low mass binary fraction in the z < 1 galaxy population.
Using a sample of 70 924 stars from the second data release of the GALAH optical spectroscopic survey, we construct median sequences of [X/Mg] vs. [Mg/H] for 21 elements, separating the high-$alpha$/``low-Ia and low-$alpha$/``high-Ia stellar populati ons through cuts in [Mg/Fe]. Previous work with the near-IR APOGEE survey has shown that such sequences are nearly independent of location in the Galactic disk, implying that they are determined by stellar nucleosynthesis yields with little sensitivity to other chemical evolution aspects. The separation between the two [X/Mg] sequences indicates the relative importance of prompt and delayed enrichment mechanisms, while the sequences slopes indicate metallicity dependence of the yields. GALAH and APOGEE measurements agree for some of their common elements, but differ in sequence separation or metallicity trends for others. GALAH offers access to nine new elements. We infer that about $75%$ of solar C comes from core collapse supernovae and $25%$ from delayed mechanisms. We find core collapse fractions of $60-80%$ for the Fe-peak elements Sc, Ti, Cu, and Zn, with strong metallicity dependence of the core collapse Cu yield. For the neutron capture elements Y, Ba, and La, we infer large delayed contributions with non-monotonic metallicity dependence. The separation of the [Eu/Mg] sequences implies that at least $sim30%$ of Eu enrichment is delayed with respect to star formation. We compare our results to predictions of several supernova and AGB yield models; C, Na, K, Mn, and Ca all show discrepancies with models that could make them useful diagnostics of nucleosynthesis physics.
(Abridged) We analyze chemical and kinematical properties of about 850 FGK solar neighborhood long-lived dwarfs observed with the HARPS high-resolution spectrograph. The stars in the sample have logg > 4 dex, 5000 < Teff < 6500 K, and -1.39 < [Fe/H] < 0.55 dex. We apply a purely chemical analysis approach based on the [alpha/Fe] vs. [Fe/H] plot to separate Galactic stellar populations into the thin disk, thick disk and high-alpha metal-rich (hamr). Our analysis shows a negative gradient of the rotational velocity of the thin disk stars with [Fe/H] (-17 km s^-1 dex^-1), and a steep positive gradient for both the thick disk and hamr stars with the same magnitude of about +42 km s^-1 dex^-1. For the thin disk stars we observed no correlation between orbital eccentricities and metallicity, but observed a steep negative gradient for the thick disk and hamr stars with practically the same magnitude (about -0.18 dex^-1). Our results suggest that radial migration played an important role in the formation and evolution of the thin disk. For the thick disk stars it is not possible to reach a firm conclusion about their origin. Based on the eccentricity distribution of the thick disk stars only their accretion origin can be ruled out, and the heating and migration scenario could explain the positive steep gradient of V_phi with [Fe/H]. Analyzing the hamr stellar population we found that they share properties of both the thin and thick disk population. A comparison of the properties of the hamr stars with that of the subsample of stars from the N-body/SPH simulation using radial migration suggest that they may have originated from the inner Galaxy. Further detailed investigations would help to clarify their exact nature and origin.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا