ﻻ يوجد ملخص باللغة العربية
Using a sample of galaxies selected from the Sloan Digital Sky Survey Data Release 7 (SDSS DR7) and a catalog of bulge-disk decompositions, we study how the size distribution of galaxies depends on the intrinsic properties of galaxies, such as concentration, morphology, specific star formation rate (sSFR), and bulge fraction, and on the large-scale environments in the context of central/satellite decomposition, halo environment, the cosmic web: cluster, filament, sheet ~and void, as well as galaxy number density. We find that there is a strong dependence of the luminosity- or mass-size relation on the galaxy concentration, morphology, sSFR, and bulge fraction. Compared with late-type (spiral) galaxies, there is a clear trend of smaller sizes and steeper slope for early-type (elliptical) galaxies. Similarly, galaxies with high bulge fraction have smaller sizes and steeper slope than those with low bulge fraction. Fitting formula of the average luminosity- and mass-size relations are provided for galaxies of these different intrinsic properties. Examining galaxies in terms of their large scale environments, we find that the mass-size relation has some weak dependence on the halo mass and central/satellite segregation for galaxies within mass range $9.0le log M_{ast} le 10.5$, where satellites or galaxies in more massive halos have slightly smaller sizes than their counterparts. While the cosmic web and local number density dependence of the mass-size relation is almost negligible.
The alignment between satellites and central galaxies has been studied in detail both in observational and theoretical works. The widely accepted fact is that the satellites preferentially reside along the major axis of their central galaxy. However,
We study the alignment of galaxies relative to their local environment in SDSS-DR8 and, using these data, we discuss evolution scenarios for different types of galaxies. We defined a vector field of the direction of anisotropy of the local environmen
The simplest analyses of halo bias assume that halo mass alone determines halo clustering. However, if the large scale environment is fixed, then halo clustering is almost entirely determined by environment, and is almost completely independent of ha
We use the angular Two Point Correlation Function (TPCF) to investigate the hierarchical distribution of young star clusters in 12 local (3--18 Mpc) star-forming galaxies using star cluster catalogues obtained with the textit{Hubble Space Telescope}
We have analyzed the spatial distribution of galaxies from the release of the Sloan Digital Sky Survey of galactic redshifts (SDSS DR7), applying the complete correlation function (conditional density), two-point conditional density (cylinder), and r