ترغب بنشر مسار تعليمي؟ اضغط هنا

US Cosmic Visions: New Ideas in Dark Matter 2017: Community Report

116   0   0.0 ( 0 )
 نشر من قبل Rouven Essig
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This white paper summarizes the workshop U.S. Cosmic Visions: New Ideas in Dark Matter held at University of Maryland on March 23-25, 2017.

قيم البحث

اقرأ أيضاً

This white paper summarizes the activities of the Brazilian community concerning dark matter physics and highlights the importance of financial support to Brazilian groups that are deeply involved in experimental endeavours. The flagships of the Braz ilian dark matter program are the Cherenkov Telescope Array, DARKSIDE, SBN and LHC experiments, but we emphasize that smaller experiments such as DAMIC and CONNIE constitute important probes to dark sectors as well and should receive special attention. Small experimental projects showing the potential to probe new regions of parameter space of dark matter models are encouraged. On the theoretical and phenomenological side, some groups are devoted to astrophysical aspects such as the dark matter density profile while others explore the signature of dark matter models at colliders, direct and indirect detection experiments. In summary, the Brazilian dark matter community that was born not long ago has grown tremendously in the past years and now plays an important role in the hunt for a dark matter particle.
This report, based on the Dark Sectors workshop at SLAC in April 2016, summarizes the scientific importance of searches for dark sector dark matter and forces at masses beneath the weak-scale, the status of this broad international field, the importa nt milestones motivating future exploration, and promising experimental opportunities to reach these milestones over the next 5-10 years.
A strong instrumentation and detector R&D program has enabled the current generation of cosmic frontier surveys. A small investment in R&D will continue to pay dividends and enable new probes to investigate the accelerated expansion of the universe. Instrumentation and detector R&D provide critical training opportunities for future generations of experimentalists, skills that are important across the entire Department of Energy High Energy Physics program.
We have recently examined a large number of points in the parameter space of the phenomenological MSSM, the 19-dimensional parameter space of the CP-conserving MSSM with Minimal Flavor Violation. We determined whether each of these points satisfied e xisting experimental and theoretical constraints. This analysis provides insight into general features of the MSSM without reference to a particular SUSY breaking scenario or any other assumptions at the GUT scale. This study opens up new possibilities for SUSY phenomenology both in colliders and in astrophysical experiments. Here we shall discuss the implications of this analysis relevant to the study of dark matter.
We propose a novel thermal production mechanism for dark matter based on the idea that dark matter particles $chi$ can transform (`infect) heat bath particles $psi$: $chi psi rightarrow chi chi$. For a small initial abundance of $chi$ this induces an exponential growth in the dark matter number density, closely resembling the epidemic curves of a spreading pathogen after an initial outbreak. To quantify this relation we present a sharp duality between the Boltzmann equation for the dark matter number density and epidemiological models for the spread of infectious diseases. Finally we demonstrate that the exponential growth naturally stops before $chi$ thermalizes with the heat bath, corresponding to a triumphant `flattening of the curve that matches the observed dark matter abundance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا