ﻻ يوجد ملخص باللغة العربية
We propose a nonparametric method to explicitly model and represent the derivatives of smooth underlying trajectories for longitudinal data. This representation is based on a direct Karhunen--Lo`eve expansion of the unobserved derivatives and leads to the notion of derivative principal component analysis, which complements functional principal component analysis, one of the most popular tools of functional data analysis. The proposed derivative principal component scores can be obtained for irregularly spaced and sparsely observed longitudinal data, as typically encountered in biomedical studies, as well as for functional data which are densely measured. Novel consistency results and asymptotic convergence rates for the proposed estimates of the derivative principal component scores and other components of the model are derived under a unified scheme for sparse or dense observations and mild conditions. We compare the proposed representations for derivatives with alternative approaches in simulation settings and also in a wallaby growth curve application. It emerges that representations using the proposed derivative principal component analysis recover the underlying derivatives more accurately compared to principal component analysis-based approaches especially in settings where the functional data are represented with only a very small number of components or are densely sampled. In a second wheat spectra classification example, derivative principal component scores were found to be more predictive for the protein content of wheat than the conventional functional principal component scores.
Functional principal component analysis is essential in functional data analysis, but the inferences will become unconvincing when some non-Gaussian characteristics occur, such as heavy tail and skewness. The focus of this paper is to develop a robus
Functional principal component analysis (FPCA) could become invalid when data involve non-Gaussian features. Therefore, we aim to develop a general FPCA method to adapt to such non-Gaussian cases. A Kenalls $tau$ function, which possesses identical e
Functional binary datasets occur frequently in real practice, whereas discrete characteristics of the data can bring challenges to model estimation. In this paper, we propose a sparse logistic functional principal component analysis (SLFPCA) method t
We consider spatially dependent functional data collected under a geostatistics setting, where locations are sampled from a spatial point process. The functional response is the sum of a spatially dependent functional effect and a spatially independe
We consider nonparametric estimation of the mean and covariance functions for functional/longitudinal data. Strong uniform convergence rates are developed for estimators that are local-linear smoothers. Our results are obtained in a unified framework