ترغب بنشر مسار تعليمي؟ اضغط هنا

Distinguishing humans from computers in the game of go: a complex network approach

154   0   0.0 ( 0 )
 نشر من قبل Olivier Giraud
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We compare complex networks built from the game of go and obtained from databases of human-played games with those obtained from computer-played games. Our investigations show that statistical features of the human-based networks and the computer-based networks differ, and that these differences can be statistically significant on a relatively small number of games using specific estimators. We show that the deterministic or stochastic nature of the computer algorithm playing the game can also be distinguished from these quantities. This can be seen as tool to implement a Turing-like test for go simulators.

قيم البحث

اقرأ أيضاً

We study the game of go from a complex network perspective. We construct a directed network using a suitable definition of tactical moves including local patterns, and study this network for different datasets of professional tournaments and amateur games. The move distribution follows Zipfs law and the network is scale free, with statistical peculiarities different from other real directed networks, such as e. g. the World Wide Web. These specificities reflect in the outcome of ranking algorithms applied to it. The fine study of the eigenvalues and eigenvectors of matrices used by the ranking algorithms singles out certain strategic situations. Our results should pave the way to a better modelization of board games and other types of human strategic scheming.
A number of recent studies of information diffusion in social media, both empirical and theoretical, have been inspired by viral propagation models derived from epidemiology. These studies model the propagation of memes, i.e., pieces of information, between users in a social network similarly to the way diseases spread in human society. Importantly, one would expect a meme to spread in a social network amongst the people who are interested in the topic of that meme. Yet, the importance of topicality for information diffusion has been less explored in the literature. Here, we study empirical data about two different types of memes (hashtags and URLs) spreading through the Twitters online social network. For every meme, we infer its topics and for every user, we infer her topical interests. To analyze the impact of such topics on the propagation of memes, we introduce a novel theoretical framework of information diffusion. Our analysis identifies two distinct mechanisms, namely topical and non-topical, of information diffusion. The non-topical information diffusion resembles disease spreading as in simple contagion. In contrast, the topical information diffusion happens between users who are topically aligned with the information and has characteristics of complex contagion. Non-topical memes spread broadly among all users and end up being relatively popular. Topical memes spread narrowly among users who have interests topically aligned with them and are diffused more readily after multiple exposures. Our results show that the topicality of memes and users interests are essential for understanding and predicting information diffusion.
CAPTCHAs are employed as a security measure to differentiate human users from bots. A new sound-based CAPTCHA is proposed in this paper, which exploits the gaps between human voice and synthetic voice rather than relays on the auditory perception of human. The user is required to read out a given sentence, which is selected randomly from a specified book. The generated audio file will be analyzed automatically to judge whether the user is a human or not. In this paper, the design of the new CAPTCHA, the analysis of the audio files, and the choice of the audio frame window function are described in detail. And also, some experiments are conducted to fix the critical threshold and the coefficients of three indicators to ensure the security. The proposed audio CAPTCHA is proved accessible to users. The user study has shown that the human success rate reaches approximately 97% and the pass rate of attack software using Microsoft SDK 5.1 is only 4%. The experiments also indicated that it could be solved by most human users in less than 14 seconds and the average time is only 7.8 seconds.
Social groups play a crucial role in social media platforms because they form the basis for user participation and engagement. Groups are created explicitly by members of the community, but also form organically as members interact. Due to their impo rtance, they have been studied widely (e.g., community detection, evolution, activity, etc.). One of the key questions for understanding how such groups evolve is whether there are different types of groups and how they differ. In Sociology, theories have been proposed to help explain how such groups form. In particular, the common identity and common bond theory states that people join groups based on identity (i.e., interest in the topics discussed) or bond attachment (i.e., social relationships). The theory has been applied qualitatively to small groups to classify them as either topical or social. We use the identity and bond theory to define a set of features to classify groups into those two categories. Using a dataset from Flickr, we extract user-defined groups and automatically-detected groups, obtained from a community detection algorithm. We discuss the process of manual labeling of groups into social or topical and present results of predicting the group label based on the defined features. We directly validate the predictions of the theory showing that the metrics are able to forecast the group type with high accuracy. In addition, we present a comparison between declared and detected groups along topicality and sociality dimensions.
Online government petitions represent a new data-rich mode of political participation. This work examines the thus far understudied dynamics of sharing petitions on social media in order to garner signatures and, ultimately, a government response. Us ing 20 months of Twitter data comprising over 1 million tweets linking to a petition, we perform analyses of networks constructed of petitions and supporters on Twitter, revealing implicit social dynamics therein. We find that Twitter users do not exclusively share petitions on one issue nor do they share exclusively popular petitions. Among the over 240,000 Twitter users, we find latent support groups, with the most central users primarily being politically active average individuals. Twitter as a platform for sharing government petitions, thus, appears to hold potential to foster the creation of and coordination among a new form of latent support interest groups online.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا