ترغب بنشر مسار تعليمي؟ اضغط هنا

Self-Adjointness of Dirac Operators with Infinite Mass Boundary Conditions in Sectors

104   0   0.0 ( 0 )
 نشر من قبل Loic Le Treust
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Loic Le Treust




اسأل ChatGPT حول البحث

This paper deals with the study of the two-dimensional Dirac operatorwith infinite mass boundary condition in a sector. We investigate the question ofself-adjointness depending on the aperture of the sector: when the sector is convexit is self-adjoint on a usual Sobolev space whereas when the sector is non-convexit has a family of self-adjoint extensions parametrized by a complex number of theunit circle. As a byproduct of this analysis we are able to give self-adjointnessresults on polygones. We also discuss the question of distinguished self-adjointextensions and study basic spectral properties of the operator in the sector.



قيم البحث

اقرأ أيضاً

201 - Albert Much 2015
We consider deformations of unbounded operators by using the novel construction tool of warped convolutions. By using the Kato-Rellich theorem we show that unbounded self-adjoint deformed operators are self-adjoint if they satisfy a certain condition . This condition proves itself to be necessary for the oscillatory integral to be well-defined. Moreover, different proofs are given for self-adjointness of deformed unbounded operators in the context of quantum mechanics and quantum field theory.
Depending on the behaviour of the complex-valued electromagnetic potential in the neighbourhood of infinity, pseudomodes of one-dimensional Dirac operators corresponding to large pseudoeigenvalues are constructed. This is a first systematic non-semi- classical approach, which results in substantial progress in achieving optimal conditions and conclusions as well as in covering a wide class of previously inaccessible potentials, including superexponential ones.
We show that the eigenvalues of the intrinsic Dirac operator on the boundary of a Euclidean domain can be obtained as the limits of eigenvalues of Euclidean Dirac operators, either in the domain with a MIT-bag type boundary condition or in the whole space, with a suitably chosen zero order mass term.
We establish an integral variational principle for the spreading speed of the one dimensional reaction diffusion equation with Stefan boundary conditions, for arbitrary reaction terms. This principle allows to obtain in a simple way the dependence of the speed on the Stefan constant. As an application a generalized Zeldovich-Frank-Kamenetskii lower bound for the speed, valid for monostable and combustion reaction terms, is given.
Let $$L_0=suml_{j=1}^nM_j^0D_j+M_0^0,,,,,D_j=frac{1}{i}frac{pa}{paxj}, quad xinRn,$$ be a constant coefficient first-order partial differential system, where the matrices $M_j^0$ are Hermitian. It is assumed that the homogeneous part is stron gly propagative. In the nonhomegeneous case it is assumed that the operator is isotropic . The spectral theory of such systems and their potential perturbations is expounded, and a Limiting Absorption Principle is obtained up to thresholds. Special attention is given to a detailed study of the Dirac and Maxwell operators. The estimates of the spectral derivative near the thresholds are based on detailed trace estimates on the slowness surfaces. Two applications of these estimates are presented: begin{itemize} item Global spacetime estimates of the associated evolution unitary groups, that are also commonly viewed as decay estimates. In particular the Dirac and Maxwell systems are explicitly treated. item The finiteness of the eigenvalues (in the spectral gap) of the perturbed Dirac operator is studied, under suitable decay assumptions on the potential perturbation. end{itemize}
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا