ترغب بنشر مسار تعليمي؟ اضغط هنا

A theoretical explanation for the Central Molecular Zone asymmetry

73   0   0.0 ( 0 )
 نشر من قبل Mattia Carlo Sormani
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

It has been known for more than thirty years that the distribution of molecular gas in the innermost 300 parsecs of the Milky Way, the Central Molecular Zone, is strongly asymmetric. Indeed, approximately three quarters of molecular emission comes from positive longitudes, and only one quarter from negative longitudes. However, despite much theoretical effort, the origin of this asymmetry has remained a mystery. Here we show that the asymmetry can be neatly explained by unsteady flow of gas in a barred potential. We use high-resolution 3D hydrodynamical simulations coupled to a state-of-the-art chemical network. Despite the initial conditions and the bar potential being point-symmetric with respect to the Galactic Centre, asymmetries develop spontaneously due to the combination of a hydrodynamical instability known as the wiggle instability and the thermal instability. The observed asymmetry must be transient: observations made tens of megayears in the past or in the future would often show an asymmetry in the opposite sense. Fluctuations of amplitude comparable to the observed asymmetry occur for a large fraction of the time in our simulations, and suggest that the present is not an exceptional moment in the life of our Galaxy.

قيم البحث

اقرأ أيضاً

The Central Molecular Zone (CMZ) spans the inner ~450 pc (3 degrees) of our Galaxy. This region is defined by its enhanced molecular emission and contains 5% of the entire Galaxys molecular gas mass. However, the number of detected star forming sites towards the CMZ may be low for the amount of molecular gas that is present, and improved surveys of star formation indicators can help clarify this. With the Karl G Jansky Very Large Array (VLA), we conducted a blind survey of 6.7 GHz methanol masers spanning the inner 3deg x 40arcmin (450 pc x 100 pc) of the Galaxy. We detected 43 methanol masers towards 28 locations, 16 of which are new detections. The velocities of most of these masers are consistent with being located within the CMZ. A majority of the detected methanol masers are distributed towards positive Galactic longitudes, similar to 2/3 of the molecular gas mass distributed at positive Galactic longitudes. The 6.7 GHz methanol maser is an excellent indicator of high mass (>8 solar mass) star formation, with new detections indicating sites of massive star formation in the CMZ.
The H3+ molecule has been detected in many lines of sight within the central molecular zone (CMZ) with exceptionally large column densities and unusual excitation properties compared to diffuse local clouds. The detection of the (3,3) metastable leve l has been suggested to be the signature of warm and diffuse gas in the CMZ. We use the Meudon PDR code to re-examine the relationship between the column density of H3+ and the cosmic-ray ionization rate, $zeta$, up to large values of $zeta$. We study the impact of the various mechanisms that can excite H3+ in its metastable state. We produce grids of PDR models exploring different parameters ($zeta$, size of clouds, metallicity) and infer the physical conditions that best match the observations toward ten lines of sight in the CMZ. For one of them, Herschel observations of HF, OH+, H2O+, and H3O+ can be used as additional constraints. We check that the results found for H3+ also account for the observations of these molecules. We find that the linear relationship between N(H3+) and $zeta$ only holds up to a certain value of the cosmic-ray ionization rate, which depends on the proton density. A value $zeta sim 1 - 11 times 10^{-14}$ s$^{-1}$ explains both the large observed H3+ column density and its excitation in the metastable level (3,3) in the CMZ. It also reproduces N(OH+), N(H2O+) and N(H3O+) detected toward Sgr B2(N). We confirm that the CMZ probed by H3+ is diffuse, nH $lesssim$ 100 cm-3 and warm, T $sim$ 212-505 K. This warm medium is due to cosmic-ray heating. We also find that the diffuse component probed by H3+ must fill a large fraction of the CMZ. Finally, we suggest the warm gas in the CMZ enables efficient H2 formation via chemisorption sites as in PDRs. This contributes to enhance the abundance of H3+ in this high cosmic-ray flux environment.
We have imaged 24 spectral lines in the Central Molecular Zone (CMZ) around the Galactic Centre, in the range 42 to 50 GHz. The lines include emission from the CS, CH3OH, HC3N, SiO, HNCO, HOCO+, NH2CHO, OCS, HCS+, CCS, C34S, 13CS, 29SiO, H13CCCN, HCC 13CN and HC5}N molecules, and three hydrogen recombination lines. The area covered is Galactic longitude -0.7 to 1.8 deg. and latitude -0.3 to 0.2 deg., including the bright cores around Sgr A, SgrB2, SgrC and G1.6-0.025. This work used the 22-m Mopra radio telescope in Australia, obtaining ~ 1.8 km/s spectral and ~ 65 arcsec spatial resolution. We present peak images from this study and conduct a principal component analysis on the integrated emission from the brightest 10 lines, to study similarities and differences in the line distribution. We examine the integrated line intensities and line ratios in selected apertures around the bright cores, as well as for the complete mapped region of the CMZ. We compare these 7-mm lines to the corresponding lines in the 3-mm band, for five molecules, to study the excitation. There is a variation in 3-mm to 7-mm line ratio across the CMZ, with relatively higher ratio in the centre around Sgr B2 and Sgr A. We find that the lines are sub-thermally excited, and from modelling with RADEX find that non-LTE conditions apply, with densities of order 10^4 cm^{-3}.
We have mapped 20 molecular lines in the Central Molecular Zone (CMZ) around the Galactic Centre, emitting from 85.3 to 93.3 GHz. This work used the 22-m Mopra radio telescope in Australia, equipped with the 8-GHz bandwidth UNSW-MOPS digital filter b ank, obtaining sim 2 km/s spectral and sim 40 arcsec spatial resolution. The lines measured include emission from the c-C3H2, CH3CCH, HOCO+, SO, H13CN, H13CO+, SO, H13NC, C2H, HNCO, HCN, HCO+, HNC, HC3N, 13CS and N2H+ molecules. The area covered is Galactic longitude -0.7 to 1.8 deg. and latitude -0.3 to 0.2 deg., including the bright dust cores around Sgr A, Sgr B2, Sgr C and G1.6-0.025. We present images from this study and conduct a principal component analysis on the integrated emission from the brightest 8 lines. This is dominated by the first component, showing that the large-scale distribution of all molecules are very similar. We examine the line ratios and optical depths in selected apertures around the bright dust cores, as well as for the complete mapped region of the CMZ. We highlight the behaviour of the bright HCN, HNC and HCO+ line emission, together with that from the 13C isotopologues of these species, and compare the behaviour with that found in extra-galactic sources where the emission is unresolved spatially. We also find that the isotopologue line ratios (e.g. HCO+/H13CO+) rise significantly with increasing red-shifted velocity in some locations. Line luminosities are also calculated and compared to that of CO, as well as to line luminosities determined for external galaxies.
The Milky Ways central molecular zone (CMZ) has emerged in recent years as a unique laboratory for the study of star formation. Here we use the simulations presented in Tress et al. 2020 to investigate star formation in the CMZ. These simulations res olve the structure of the interstellar medium at sub-parsec resolution while also including the large-scale flow in which the CMZ is embedded. Our main findings are as follows. (1) While most of the star formation happens in the CMZ ring at $Rgtrsim100 {, rm pc}$, a significant amount also occurs closer to SgrA* at $R lesssim 10{, rm pc}$. (2) Most of the star formation in the CMZ happens downstream of the apocentres, consistent with the pearls-on-a-string scenario, and in contrast to the notion that an absolute evolutionary timeline of star formation is triggered by pericentre passage. (3) Within the timescale of our simulations ($sim100$ Myr), the depletion time of the CMZ is constant within a factor of $sim2$. This suggests that variations in the star formation rate are primarily driven by variations in the mass of the CMZ, caused for example by AGN feedback or externally-induced changes in the bar-driven inflow rate, and not by variations in the depletion time. (4) We study the trajectories of newly born stars in our simulations. We find several examples that have age and 3D velocity compatible with those of the Arches and Quintuplet clusters. Our simulations suggest that these prominent clusters originated near the collision sites where the bar-driven inflow accretes onto the CMZ, at symmetrical locations with respect to the Galactic centre, and that they have already decoupled from the gas in which they were born.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا