ﻻ يوجد ملخص باللغة العربية
Recent interest in topological semimetals has lead to the proposal of many new topological phases that can be realized in real materials. Next to Dirac and Weyl systems, these include more exotic phases based on manifold band degeneracies in the bulk electronic structure. The exotic states in topological semimetals are usually protected by some sort of crystal symmetry and the introduction of magnetic order can influence these states by breaking time reversal symmetry. Here we show that we can realize a rich variety of different topological semimetal states in a single material, $rm CeSbTe$. This compound can exhibit different types of magnetic order that can be accessed easily by applying a small field. It allows, therefore, for tuning the electronic structure and can drive it through a manifold of topologically distinct phases, such as the first nonsymmorphic magnetic topological material with an eight-fold band crossing at a high symmetry point. Our experimental results are backed by a full magnetic group theory analysis and ab initio calculations. This discovery introduces a realistic and promising platform for studying the interplay of magnetism and topology.
In this work, we predict a novel band structure for Carbon-Lithium(C4Li) compound using the first-principles method. We show that it exhibits two Dirac points near the Fermi level; one located at W point originating from the nonsymmophic symmetry of
While several magnetic topological semimetals have been discovered in recent years, their band structures are far from ideal, often obscured by trivial bands at the Fermi energy. Square-net materials with clean, linearly dispersing bands show potenti
We consider the effect of the Coulomb interaction in a nonsymmorphic Dirac semimetal, leading to collective charge oscillation modes (plasmons), focusing on the model originally predicted by Young and Kane [Phys. Rev. Lett. 115, 126803 (2015)]. We mo
Crystalline symmetries can generate exotic band-crossing features, which can lead to unconventional fermionic excitations with interesting physical properties. We show how a cubic Dirac point---a four-fold-degenerate band-crossing point with cubic di
There is considerable current interest to explore electronic topology in strongly correlated metals, with heavy fermion systems providing a promising setting. Recently, a Weyl-Kondo semimetal phase has been concurrently discovered in theoretical and