ﻻ يوجد ملخص باللغة العربية
We show that an inflation model in which a spectator axion field is coupled to an SU(2) gauge field produces a large three-point function (bispectrum) of primordial gravitational waves, $B_{h}$, on the scales relevant to the cosmic microwave background experiments. The amplitude of the bispectrum at the equilateral configuration is characterized by $B_{h}/P_h^2=mathcal{O}(10)times Omega_A^{-1}$, where $Omega_A$ is a fraction of the energy density in the gauge field and $P_h$ is the power spectrum of gravitational waves produced by the gauge field.
We calculate the bispectrum of scale-invariant tensor modes sourced by spectator SU(2) gauge fields during inflation in a model containing a scalar inflaton, a pseudoscalar axion and SU(2) gauge fields. A large bispectrum is generated in this model a
We study scalar-tensor-tensor cross correlation $langle zeta hh rangle$ generated by the dynamics of interacting axion and SU(2) gauge fields during inflation. We quantize the quadratic action and solve the linear equations by taking into account mix
We study the scalar-tensor-tensor non-Gaussian signal in an inflationary model comprising also an axion coupled with SU(2) gauge fields. In this set-up, metric fluctuations are sourced by the gauge fields already at the linear level providing an enha
Violation of parity symmetry in the gravitational sector, which manifests into unequal left and right circular polarization states of primordial gravitational waves, represents a way to test high-energy modifications to general relativity. In this pa
Primordial gravitational waves (GWs) are said to be a smoking gun in cosmic inflation, while, even if they are detected, the specification of their origins are still required for establishing a true inflationary model. Testing non-Gaussianity in the