ترغب بنشر مسار تعليمي؟ اضغط هنا

Translation-based Recommendation

73   0   0.0 ( 0 )
 نشر من قبل Ruining He
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Modeling the complex interactions between users and items as well as amongst items themselves is at the core of designing successful recommender systems. One classical setting is predicting users personalized sequential behavior (or `next-item recommendation), where the challenges mainly lie in modeling `third-order interactions between a user, her previously visited item(s), and the next item to consume. Existing methods typically decompose these higher-order interactions into a combination of pairwise relationships, by way of which user preferences (user-item interactions) and sequential patterns (item-item interactions) are captured by separate components. In this paper, we propose a unified method, TransRec, to model such third-order relationships for large-scale sequential prediction. Methodologically, we embed items into a `transition space where users are modeled as translation vectors operating on item sequences. Empirically, this approach outperforms the state-of-the-art on a wide spectrum of real-world datasets. Data and code are available at https://sites.google.com/a/eng.ucsd.edu/ruining-he/.



قيم البحث

اقرأ أيضاً

65 - Ke Sun , Tieyun Qian 2019
The context information such as product category plays a critical role in sequential recommendation. Recent years have witnessed a growing interest in context-aware sequential recommender systems. Existing studies often treat the contexts as auxiliar y feature vectors without considering the sequential dependency in contexts. However, such a dependency provides valuable clues to predict the users future behavior. For example, a user might buy electronic accessories after he/she buy an electronic product. In this paper, we propose a novel seq2seq translation architecture to highlight the importance of sequential dependency in contexts for sequential recommendation. Specifically, we first construct a collateral context sequence in addition to the main interaction sequence. We then generalize recent advancements in translation model from sequences of words in two languages to sequences of items and contexts in recommender systems. Taking the category information as an items context, we develop a basic coupled and an extended tripled seq2seq translation models to encode the category-item and item-category-item relations between the item and context sequences. We conduct extensive experiments on three real world datasets. The results demonstrate the superior performance of the proposed model compared with the state-of-the-art baselines.
The problem of basket recommendation~(BR) is to recommend a ranking list of items to the current basket. Existing methods solve this problem by assuming the items within the same basket are correlated by one semantic relation, thus optimizing the ite m embeddings. However, this assumption breaks when there exist multiple intents within a basket. For example, assuming a basket contains {textit{bread, cereal, yogurt, soap, detergent}} where {textit{bread, cereal, yogurt}} are correlated through the breakfast intent, while {textit{soap, detergent}} are of cleaning intent, ignoring multiple relations among the items spoils the ability of the model to learn the embeddings. To resolve this issue, it is required to discover the intents within the basket. However, retrieving a multi-intent pattern is rather challenging, as intents are latent within the basket. Additionally, intents within the basket may also be correlated. Moreover, discovering a multi-intent pattern requires modeling high-order interactions, as the intents across different baskets are also correlated. To this end, we propose a new framework named as textbf{M}ulti-textbf{I}ntent textbf{T}ranslation textbf{G}raph textbf{N}eural textbf{N}etwork~({textbf{MITGNN}}). MITGNN models $T$ intents as tail entities translated from one corresponding basket embedding via $T$ relation vectors. The relation vectors are learned through multi-head aggregators to handle user and item information. Additionally, MITGNN propagates multiple intents across our defined basket graph to learn the embeddings of users and items by aggregating neighbors. Extensive experiments on two real-world datasets prove the effectiveness of our proposed model on both transductive and inductive BR. The code is available online at https://github.com/JimLiu96/MITGNN.
Recommending appropriate algorithms to a classification problem is one of the most challenging issues in the field of data mining. The existing algorithm recommendation models are generally constructed on only one kind of meta-features by single lear ners. Considering that i) ensemble learners usually show better performance and ii) different kinds of meta-features characterize the classification problems in different viewpoints independently, and further the models constructed with different sets of meta-features will be complementary with each other and applicable for ensemble. This paper proposes an ensemble learning-based algorithm recommendation method. To evaluate the proposed recommendation method, extensive experiments with 13 well-known candidate classification algorithms and five different kinds of meta-features are conducted on 1090 benchmark classification problems. The results show the effectiveness of the proposed ensemble learning based recommendation method.
332 - Yao Zhou , Jianpeng Xu , Jun Wu 2020
Recommender systems are popular tools for information retrieval tasks on a large variety of web applications and personalized products. In this work, we propose a Generative Adversarial Network based recommendation framework using a positive-unlabele d sampling strategy. Specifically, we utilize the generator to learn the continuous distribution of user-item tuples and design the discriminator to be a binary classifier that outputs the relevance score between each user and each item. Meanwhile, positive-unlabeled sampling is applied in the learning procedure of the discriminator. Theoretical bounds regarding positive-unlabeled sampling and optimalities of convergence for the discriminators and the generators are provided. We show the effectiveness and efficiency of our framework on three publicly accessible data sets with eight ranking-based evaluation metrics in comparison with thirteen popular baselines.
For present e-commerce platforms, session-based recommender systems are developed to predict users preference for next-item recommendation. Although a session can usually reflect a users current preference, a local shift of the users intention within the session may still exist. Specifically, the interactions that take place in the early positions within a session generally indicate the users initial intention, while later interactions are more likely to represent the latest intention. Such positional information has been rarely considered in existing methods, which restricts their ability to capture the significance of interactions at different positions. To thoroughly exploit the positional information within a session, a theoretical framework is developed in this paper to provide an in-depth analysis of the positional information. We formally define the properties of forward-awareness and backward-awareness to evaluate the ability of positional encoding schemes in capturing the initial and the latest intention. According to our analysis, existing positional encoding schemes are generally forward-aware only, which can hardly represent the dynamics of the intention in a session. To enhance the positional encoding scheme for the session-based recommendation, a dual positional encoding (DPE) is proposed to account for both forward-awareness and backward-awareness. Based on DPE, we propose a novel Positional Recommender (PosRec) model with a well-designed Position-aware Gated Graph Neural Network module to fully exploit the positional information for session-based recommendation tasks. Extensive experiments are conducted on two e-commerce benchmark datasets, Yoochoose and Diginetica and the experimental results show the superiority of the PosRec by comparing it with the state-of-the-art session-based recommender models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا