ترغب بنشر مسار تعليمي؟ اضغط هنا

Pure states in the SYK model and nearly-$AdS_2$ gravity

285   0   0.0 ( 0 )
 نشر من قبل Juan Maldacena
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider pure states in the SYK model. These are given by a simple local condition on the Majorana fermions, evolved over an interval in Euclidean time to project on to low energy states. We find that diagonal correlators are exactly the same as thermal correlators at leading orders in the large $N$ expansion. We also describe off diagonal correlators that decay in time, and are given simply in terms of thermal correlators. We also solved the model numerically for low values of $N$ and noticed that subsystems become typically entangled after an interaction time. In addition, we identified configurations in two dimensional nearly-$AdS_2$ gravity with similar symmetries. These gravity configurations correspond to states with regions behind horizons. The region behind the horizon can be made accessible by modifying the Hamiltonian of the boundary theory using the the knowledge of the particular microstate. The set of microstates in the SYK theory with these properties generates the full Hilbert space.



قيم البحث

اقرأ أيضاً

We study a two-site Sachdev-Ye-Kitaev (SYK) model with complex couplings, and identify a low temperature transition to a gapped phase characterized by a constant in temperature free energy. This transition is observed without introducing a coupling b etween the two sites, and only appears after ensemble average over the complex couplings. We propose a gravity interpretation of these results by constructing an explicit solution of Jackiw-Teitelboim (JT) gravity with matter: a two-dimensional Euclidean wormhole whose geometry is the double trumpet. This solution is sustained by imaginary sources for a marginal operator, without the need of a coupling between the two boundaries. As the temperature is decreased, there is a transition from a disconnected phase with two black holes to the connected wormhole phase, in qualitative agreement with the SYK observation. The expectation value of the marginal operator is an order parameter for this transition. This illustrates in a concrete setup how a Euclidean wormhole can arise from an average over field theory couplings.
We study the SYK model in the large $N$ limit beyond the replica-diagonal approximation. First we show that there are exact replica-nondiagonal solutions of the saddle point equations for $q=2$ for any finite replica number $M$. In the interacting $q =4$ case we are able to construct the numerical solutions, which are in one-to-one correspondence to the analytic solutions of the quadratic model. These solutions are singular in the $M to 0$ limit in both quadratic and quartic interaction cases. The calculations of the on-shell action at finite integer $M$ show that the nondiagonal replica-symmetric saddles are subleading in both quadratic and quartic cases. We also study replica-nondiagonal solutions of the SYK in the strong coupling limit. For arbitrary $q$ we show that besides the usual solutions of the replica-diagonal saddle point equations in the conformal limit, there are also replica-nondiagonal solutions for any value of $M$ (including zero). The specific configurations that we study, have factorized time and replica dependencies. The corresponding saddle point equations are separable at strong coupling, and can be solved using the Parisi ansatz from spin glass theory. We construct the solutions which correspond to the replica-symmetric case and to one-step replica symmetry breaking. We compute the regularized free energy on these solutions in the limit of zero replicas. It is observed that there are nondiagonal solutions with the regularized free energy lower than that of the standard diagonal conformal solution.
We continue the study of the Sachdev-Ye-Kitaev model in the Large $N$ limit. Following our formulation in terms of bi-local collective fields with dynamical reparametrization symmetry, we perform perturbative calculations around the conformal IR point.
145 - Shao-Kai Jian , Brian Swingle , 2020
The concepts of operator size and computational complexity play important roles in the study of quantum chaos and holographic duality because they help characterize the structure of time-evolving Heisenberg operators. It is particularly important to understand how these microscopically defined measures of complexity are related to notions of complexity defined in terms of a dual holographic geometry, such as complexity-volume (CV) duality. Here we study partially entangled thermal states in the Sachdev-Ye-Kitaev (SYK) model and their dual description in terms of operators inserted in the interior of a black hole in Jackiw-Teitelboim (JT) gravity. We compare a microscopic definition of complexity in the SYK model known as K-complexity to calculations using CV duality in JT gravity and find that both quantities show an exponential-to-linear growth behavior. We also calculate the growth of operator size under time evolution and find connections between size and complexity. While the notion of operator size saturates at the scrambling time, our study suggests that complexity, which is well defined in both quantum systems and gravity theories, can serve as a useful measure of operator evolution at both early and late times.
We investigate two sparse Sachdev-Ye-Kitaev (SYK) systems coupled by a bilinear term as a holographic quantum mechanical description of an eternal traversable wormhole in the low temperature limit. Each SYK system consists of $N$ Majorana fermions co upled by random $q$-body interactions. The degree of sparseness is captured by a regular hypergraph in such a way that the Hamiltonian contains exactly $k,N$ independent terms. We improve on the theoretical understanding of the sparseness property by using known measures of hypergraph expansion. We show that the sparse version of the two coupled SYK model is gapped with a ground state close to a thermofield double state. Using Krylov subspace and parallelization techniques, we simulate the system for $q=4$ and $q=8.$ The sparsity of the model allows us to explore larger values of $N$ than the ones existing in the literature for the all-to-all SYK. We analyze in detail the two-point functions and the transmission amplitude of signals between the two systems. We identify a range of parameters where revivals obey the scaling predicted by holography and signals can be interpreted as traversing the wormhole.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا