ترغب بنشر مسار تعليمي؟ اضغط هنا

Dust Density Distribution and Imaging Analysis of Different Ice Lines in Protoplanetary Disks

248   0   0.0 ( 0 )
 نشر من قبل Paola Pinilla
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent high angular resolution observations of protoplanetary disks at different wavelengths have revealed several kinds of structures, including multiple bright and dark rings. Embedded planets are the most used explanation for such structures, but there are alternative models capable of shaping the dust in rings as it has been observed. We assume a disk around a Herbig star and investigate the effect that ice lines have on the dust evolution, following the growth, fragmentation, and dynamics of multiple dust size particles, covering from 1 $mu$m to 2 m sized objects. We use simplified prescriptions of the fragmentation velocity threshold, which is assumed to change radially at the location of one, two, or three ice lines. We assume changes at the radial location of main volatiles, specifically H$_2$O, CO$_2$, and NH$_3$. Radiative transfer calculations are done using the resulting dust density distributions in order to compare with current multiwavelength observations. We find that the structures in the dust density profiles and radial intensities at different wavelengths strongly depend on the disk viscosity. A clear gap of emission can be formed between ice lines and be surrounded by ring-like structures, in particular between the H$_2$O and CO$_2$ (or CO). The gaps are expected to be shallower and narrower at millimeter emission than at near-infrared, opposite to model predictions of particle trapping. In our models, the total gas surface density is not expected to show strong variations, in contrast to other gap-forming scenarios such as embedded giant planets or radial variations of the disk viscosity.



قيم البحث

اقرأ أيضاً

We present a novel method for determining the surface density of protoplanetary disks through consideration of disk dust lines which indicate the observed disk radial scale at different observational wavelengths. This method relies on the assumption that the processes of particle growth and drift control the radial scale of the disk at late stages of disk evolution such that the lifetime of the disk is equal to both the drift timescale and growth timescale of the maximum particle size at a given dust line. We provide an initial proof of concept of our model through an application to the disk TW Hya and are able to estimate the disk dust-to-gas ratio, CO abundance, and accretion rate in addition to the total disk surface density. We find that our derived surface density profile and dust-to-gas ratio are consistent with the lower limits found through measurements of HD gas. The CO ice line also depends on surface density through grain adsorption rates and drift and we find that our theoretical CO ice line estimates have clear observational analogues. We further apply our model to a large parameter space of theoretical disks and find three observational diagnostics that may be used to test its validity. First we predict that the dust lines of disks other than TW Hya will be consistent with the normalized CO surface density profile shape for those disks. Second, surface density profiles that we derive from disk ice lines should match those derived from disk dust lines. Finally, we predict that disk dust and ice lines will scale oppositely, as a function of surface density, across a large sample of disks.
We present new Atacama Large Millimeter/submillimeter Array (ALMA) observations for three protoplanetary disks in Taurus at 2.9,mm and comparisons with previous 1.3,mm data both at an angular resolution of $sim0.1$ (15,au for the distance of Taurus). In the single-ring disk DS Tau, double-ring disk GO Tau, and multiple-ring disk DL Tau, the same rings are detected at both wavelengths, with radial locations spanning from 50 to 120,au. To quantify the dust emission morphology, the observed visibilities are modeled with a parametric prescription for the radial intensity profile. The disk outer radii, taken as 95% of the total flux encircled in the model intensity profiles, are consistent at both wavelengths for the three disks. Dust evolution models show that dust trapping in local pressure maxima in the outer disk could explain the observed patterns. Dust rings are mostly unresolved. The marginally resolved ring in DS Tau shows a tentatively narrower ring at the longer wavelength, an observational feature expected from efficient dust trapping. The spectral index ($alpha_{rm mm}$) increases outward and exhibits local minima that correspond to the peaks of dust rings, indicative of the changes in grain properties across the disks. The low optical depths ($tausim$0.1--0.2 at 2.9,mm and 0.2--0.4 at 1.3,mm) in the dust rings suggest that grains in the rings may have grown to millimeter sizes. The ubiquitous dust rings in protoplanetary disks modify the overall dynamics and evolution of dust grains, likely paving the way towards the new generation of planet formation.
Aims: We explore the long-term evolution of young protoplanetary disks with different approaches to computing the thermal structure determined by various cooling and heating processes in the disk and its surroundings. Methods: Numerical hydrodynamics simulations in the thin-disk limit were complemented with three thermal evolution schemes: a simplified $beta$-cooling approach with and without irradiation, in which the rate of disk cooling is proportional to the local dynamical time, a fiducial model with equal dust and gas temperatures calculated taking viscous heating, irradiation, and radiative cooling into account, and also a more sophisticated approach allowing decoupled dust and gas temperatures. Results: We found that the gas temperature may significantly exceed that of dust in the outer regions of young disks thanks to additional compressional heating caused by the infalling envelope material in the early stages of disk evolution and slow collisional exchange of energy between gas and dust in low-density disk regions. The outer envelope however shows an inverse trend with the gas temperatures dropping below that of dust. The global disk evolution is only weakly sensitive to temperature decoupling. Nevertheless, separate dust and gas temperatures may affect the chemical composition, dust evolution, and disk mass estimates. Constant-$beta$ models without stellar and background irradiation fail to reproduce the disk evolution with more sophisticated thermal schemes because of intrinsically variable nature of the $beta$-parameter. Constant-$beta$ models with irradiation can better match the dynamical and thermal evolution, but the agreement is still incomplete. Conclusions: Models allowing separate dust and gas temperatures are needed when emphasis is placed on the chemical or dust evolution in protoplanetary disks, particularly in sub-solar metallicity environments.
72 - E. Sanchis , L. Testi , A. Natta 2021
We perform a comprehensive demographic study of the CO extent relative to dust of the disk population in the Lupus clouds, in order to find indications of dust evolution and possible correlations with other properties. We increase up to 42 the number of disks of the region with measured CO and dust sizes ($R_{mathrm{CO}}$, $R_{mathrm{dust}}$) from observations with the Atacama Large Millimeter/submillimeter Array (ALMA). The sizes are obtained from modeling the ${^{12}}$CO $J = 2-1$ line emission and continuum emission at $sim 0.89$ mm with an empirical function (Nuker profile or Gaussian function). The CO emission is more extended than the dust continuum, with a $R_{68%}^{mathrm{CO}}$/$R_{68%}^{mathrm{dust}}$ median value of 2.5, for the entire population and for a sub-sample with high completeness. 6 disks, around $15%$ of the Lupus disk population have a size ratio above 4. Based on thermo-chemical modeling, this value can only be explained if the disk has undergone grain growth and radial drift. These disks do not have unusual properties in terms of stellar mass ($M_{star}$), disk mass ($M_{mathrm{disk}}$), CO and dust sizes ($R_{mathrm{CO}}$, $R_{mathrm{dust}}$), and mass accretion. We search for correlations between the size ratio and $M_{star}$, $M_{mathrm{disk}}$, $R_{mathrm{CO}}$ and $R_{mathrm{dust}}$: only a weak monotonic anti-correlation with the $R_{mathrm{dust}}$ is found. The lack of strong correlations is remarkable and suggests that the bulk of the population may be in a similar evolutionary stage, independent of the stellar and disk properties. These results should be further investigated, since the optical depth difference between CO and dust continuum may play a role in the inferred size ratios. Lastly, the CO emission for the majority of the disks is consistent with optically thick emission and an average CO temperature of around 30 K.
Meteorites contain relict decay products of short-lived radionuclides that were present in the protoplanetary disk when asteroids and planets formed. Several studies reported a high abundance of 60Fe (t1/2=2.62+/-0.04 Myr) in chondrites (60Fe/56Fe~6* 10-7), suggesting that planetary materials incorporated fresh products of stellar nucleosynthesis ejected by one or several massive stars that exploded in the vicinity of the newborn Sun. We measured 58Fe/54Fe and 60Ni/58Ni isotope ratios in whole rocks and constituents of differentiated achondrites (ureilites, aubrites, HEDs, and angrites), unequilibrated ordinary chondrites Semarkona (LL3.0) and NWA 5717 (ungrouped petrologic type 3.05), metal-rich carbonaceous chondrite Gujba (CBa), and several other meteorites (CV, EL H, LL chondrites; IIIAB, IVA, IVB iron meteorites). We derive from these measurements a much lower initial 60Fe/56Fe ratio of (11.5+/-2.6)*10-9 and conclude that 60Fe was homogeneously distributed among planetary bodies. This low ratio is consistent with derivation of 60Fe from galactic background (60Fe/56Fe=2.8*10-7 in the interstellar medium from gamma-ray observations) and can be reconciled with high 26Al/27Al=5*10-5 in chondrites if solar material was contaminated through winds by outer layers of one or several massive stars (e.g., a Wolf-Rayet star) rich in 26Al and poor in 60Fe. We present the first chronological application of the 60Fe-60Ni decay system to establish the time of core formation on Vesta at 3.7 (+2.5/-1.7) Myr after condensation of calcium-aluminum-rich inclusions (CAIs).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا