ﻻ يوجد ملخص باللغة العربية
Models of Asymmetric Dark Matter (ADM) with a sufficiently attractive and long-range force gives rise to stable bound objects, analogous to nuclei in the Standard Model, called nuggets. We study the properties of these nuggets and compute their profiles and binding energies. Our approach, applicable to both elementary and composite fermionic ADM, utilizes relativistic mean field theory, and allows a more systematic computation of nugget properties, over a wider range of sizes and force mediator masses, compared to previous literature. We identify three separate regimes of nugget property behavior corresponding to (1) non-relativistic and (2) relativistic constituents in a Coulomb-like limit, and (3) saturation in an anti-Coulomb limit when the nuggets are large compared to the force range. We provide analytical descriptions for nuggets in each regime. Through numerical calculations, we are able to confirm our analytic descriptions and also obtain smooth transitions for the nugget profiles between all three regimes. We also find that over a wide range of parameter space, the binding energy in the saturation limit is an ${cal O}(1)$ fraction of the constituents mass, significantly larger than expectations in the non-relativistic case. In a companion paper, we apply our results to synthesis of ADM nuggets in the early Universe.
Nuggets---very large stable bound objects arising in the presence of a sufficiently attractive and long-range force and in the absence of a dark Coulomb force---are a smoking gun signature for Asymmetric Dark Matter (ADM). The cosmology of ADM nugget
We propose a novel mechanism to realize two-component asymmetric dark matter of very different mass scales through bound state formation and late freeze-in decay. Assuming a particle-antiparticle asymmetry is initially shared by SM baryons and two da
We study the bound-state spectrum in a simple model of pseudo-Dirac dark matter, and examine how the rate of bound-state formation through radiative capture compares to Sommerfeld-enhanced annihilation. We use this model as an example to delineate th
We study scenarios where there exists an exotic massive particle charged under QCD in the early Universe. We calculate the formation and dissociation rates of bound states formed by pairs of these particles, and apply the results in dark matter (DM)
The small-scale structure problems of the universe can be solved by self-interacting dark matter that becomes strongly interacting at low energies. A particularly predictive model is resonant short-range self-interactions, with a dark-matter mass of