ترغب بنشر مسار تعليمي؟ اضغط هنا

Colloidal Gels Tuned by Oscillatory Shear

69   0   0.0 ( 0 )
 نشر من قبل Nick Koumakis
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We examine microstructural and mechanical changes which occur during oscillatory shear flow and reformation after flow cessation of an intermediate volume fraction colloidal gel using rheometry and Brownian Dynamics (BD) simulations. A model depletion colloid-polymer mixture is used, comprising of a hard sphere colloidal suspension with the addition of non-adsorbing linear polymer chains. Results reveal three distinct regimes depending on the strain amplitude of oscillatory shear. Large shear strain amplitudes fully break the structure which results into a more homogenous and stronger gel after flow cessation. Intermediate strain amplitudes densify the clusters and lead to highly heterogeneous and weak gels. Shearing the gel to even lower strain amplitudes creates a less heterogonous stronger solid. These three regimes of shearing are connected to the microscopic shear-induced structural heterogeneity. A comparison with steady shear flow reveals that the latter does not produce structural heterogeneities as large as oscillatory shear. Therefore oscillatory shear is a much more efficient way of tuning the mechanical properties of colloidal gels. Moreover, colloidal gels presheared at large strain amplitudes exhibit a distinct nonlinear response characterized largely by a single yielding process while in those presheared at lower rates a two step yield process is promoted due to the creation of highly heterogeneous structures.



قيم البحث

اقرأ أيضاً

Soft materials may break irreversibly upon applying sufficiently large shear oscillations, a process which physical mechanism remains largely elusive. In this work, the rupture of protein gels made of sodium caseinate under an oscillatory stress is s hown to occur in an abrupt, brittle-like manner. Upon increasing the stress amplitude, the build-up of harmonic modes in the strain response can be rescaled for all gel concentrations. This rescaling yields an empirical criterion to predict the rupture point way before the samples are significantly damaged. Fatigue experiments under stress oscillations of constant amplitude can be mapped onto the former results, which indicates that rupture is independent of the temporal pathway in which strain and damage accumulate. Finally, using ultrasonic imaging, we measure the local mechanical properties of the gels before, during and after breakdown, showing that the strain field remains perfectly homogeneous up to rupture but suddenly gives way to a solid-fluid phase separation upon breakdown.
Colloidal gels are formed through the aggregation of attractive particles, whose size ranges from 10~nm to a few micrometers, suspended in a liquid. Such gels are ubiquitous in everyday life applications, from food products to paints or construction materials, in particular thanks to their ability to easily yield, i.e., to turn from a solid to a liquid under the application of a weak external load. Understanding and controlling the mechanical response of colloidal gels is therefore of prime importance. Depending on the details of the system, however, the resulting gel networks present different microstructural organisations that may lead to widely different mechanical responses. This raises important challenges in fully characterizing yielding and in uncovering the mechanisms of nonlinear response in colloidal gels. In this paper, we distinguish between two classes of colloidal gels showing respectively reversible yielding, where the gel network reforms upon load release, and irreversible yielding, where the network is fully destroyed through fractures and phase separation. This broad, empirical distinction is achieved through rheology and local experiments at a mesoscopic scale, intermediate between the network characteristic size and the sample size. We further discuss how the observables derived from creep and fatigue experiments may be modelled to predict yielding and highlight open questions and future research directions in the domain.
Rigidity percolation (RP) occurs when mechanical stability emerges in disordered networks as constraints or components are added. Here we discuss RP with structural correlations, an effect ignored in classical theories albeit relevant to many liquid- to-amorphous-solid transitions, such as colloidal gelation, which are due to attractive interactions and aggregation. Using a lattice model, we show that structural correlations shift RP to lower volume fractions. Through molecular dynamics simulations, we show that increasing attraction in colloidal gelation increases structural correlation and thus lowers the RP transition, agreeing with experiments. Hence colloidal gelation can be understood as a RP transition, but occurs at volume fractions far below values predicted by the classical RP, due to attractive interactions which induce structural correlation.
We sandwich a colloidal gel between two parallel plates and induce a radial flow by lifting the upper plate at a constant velocity. Two distinct scenarios result from such a tensile test: ($i$) stable flows during which the gel undergoes a tensile de formation without yielding, and ($ii$) unstable flows characterized by the radial growth of air fingers into the gel. We show that the unstable regime occurs beyond a critical energy input, independent of the gels macroscopic yield stress. This implies a local fluidization of the gel at the tip of the growing fingers and results in the most unstable wavelength of the patterns exhibiting the characteristic scalings of the classical viscous fingering instability. Our work provides a quantitative criterion for the onset of fingering in colloidal gels based on a local shear-induced yielding, in agreement with the delayed failure framework.
230 - E. Del Gado , W. Kob 2005
We use molecular dynamics computer simulations to investigate the relaxation dynamics of a simple model for a colloidal gel at a low volume fraction. We find that due to the presence of the open spanning network this dynamics shows at low temperature a non-trivial dependence on the wave-vector which is very different from the one observed in dense glass-forming liquids. At high wave vectors the relaxation is due to the fast cooperative motion of the branches of the gel network, whereas at low wave vectors the overall rearrangements of the heterogeneous structure produce the relaxation process.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا