ترغب بنشر مسار تعليمي؟ اضغط هنا

Switching from pyroelectric to ferroelectric order in Ni doped CaBaCo4O7

75   0   0.0 ( 0 )
 نشر من قبل A. Venimadhav
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report ferroelectric ordering in Ni substituted CaBaCo4O7. Magnetization showed ferrimagnetic transition at 60 K and an additional transition is found ~ 82 K, further, enhanced antiferromagnetic interactions and decrease in saturation magnetization are noticed with Ni substitution. The dielectric and pyroelectric measurements illustrate a strong coupling between spin and charge degrees of freedom; ferroelectric behavior is confirmed with enhanced ordering temperature (~82 K) and saturation polarization (250 muC/m2. Neutron diffraction has revealed an increase in c-lattice parameter in Ni sample and all the Co/Ni moments are reoriented in a- direction; evidently a non-collinear ferrimagnetic to collinear ferrimagnetic spin order is observed. The coupling between the triangular and Kagome layers weakens and leads to up-up-down-down AFM ordering in the Kagoma layer. This can be viewed as a 2D-collinear layer with unequal bond distances and most likely responsible for the switching of electric polarization.

قيم البحث

اقرأ أيضاً

Magnetic properties of graphenic carbon nanostructures, relevant for future spintronic applications, depend crucially on doping and on the presence of defects. In this paper we study the magnetism of the recently detected substitutional Ni (Ni(sub)) impurities. Ni(sub) defects are non-magnetic in flat graphene and develop a non-zero magnetic moment only in metallic nanotubes. This surprising behavior stems from the peculiar curvature dependence of the electronic structure of Ni(sub). A similar magnetic/non-magnetic transition of Ni(sub) can be expected by applying anisotropic strain to a flat graphene layer.
Ni-Mn-Ga is interesting as a prototype of a magnetic shape-memory alloy showing large magnetic field induced strains. We present here results for the magnetic ordering of Mn-rich Ni-Mn-Ga alloys based on both experiments and theory. Experimental tren ds for the composition dependence of the magnetization are measured by a vibrating sample magnetometer (VSM) in magnetic fields of up to several tesla and at low temperatures. The saturation magnetization has a maximum near the stoichiometric composition and it decreases with increasing Mn content. This unexpected behaviour is interpreted via first-principles calculations within the density-functional theory. We show that extra Mn atoms are antiferromagnetically aligned to the other moments, which explains the dependence of the magnetization on composition. In addition, the effect of Mn doping on the stabilization of the structural phases and on the magnetic anisotropy energy is demonstrated.
Since its birth in the 1990s, semiconductor spintronics has suffered from poor compatibility with ferromagnets as sources of spin. While the broken inversion symmetry of some semiconductors may alternatively allow for spin-charge interconversion, its control by electric fields is volatile. Ferroelectric Rashba semiconductors stand as appealing materials unifying semiconductivity, large spin-orbit coupling, and non-volatility endowed by ferroelectricity. However, their potential for spintronics has been little explored. Here, we demonstrate the non-volatile, ferroelectric control of spin-to-charge conversion at room temperature in epitaxial GeTe films. We show that ferroelectric switching by electrical gating is possible in GeTe despite its high carrier density. We reveal a spin-to-charge conversion as effective as in Pt, but whose sign is controlled by the orientation of the ferroelectric polarization. The comparison between theoretical and experimental data suggests that spin Hall effect plays a major role for switchable conversion. These results open a route towards devices combining spin-based logic and memory integrated into a silicon-compatible material.
90 - J. Y. Jo , H. S. Han , J.-G. Yoon 2007
We investigated domain kinetics by measuring the polarization switching behaviors of polycrystalline Pb(Zr,Ti)O$_{3}$ films, which are widely used in ferroelectric memory devices. Their switching behaviors at various electric fields and temperatures could be explained by assuming the Lorentzian distribution of domain switching times. We viewed the switching process under an electric field as a motion of the ferroelectric domain through a random medium, and we showed that the local field variation due to dipole defects at domain pinning sites could explain the intriguing distribution.
The electric field control of functional properties is a crucial goal in oxide-based electronics. Non-volatile switching between different resistivity or magnetic states in an oxide channel can be achieved through charge accumulation or depletion fro m an adjacent ferroelectric. However, the way in which charge distributes near the interface between the ferroelectric and the oxide remains poorly known, which limits our understanding of such switching effects. Here we use a first-of-a-kind combination of scanning transmission electron microscopy with electron energy loss spectroscopy, near-total-reflection hard X-ray photoemission spectroscopy, and ab-initio theory to address this issue. We achieve a direct, quantitative, atomic-scale characterization of the polarization-induced charge density changes at the interface between the ferroelectric BiFeO3 and the doped Mott insulator Ca1-xCexMnO3, thus providing insight on how interface-engineering can enhance these switching effects.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا