ﻻ يوجد ملخص باللغة العربية
We have investigated under which conditions hyperons (particularly $Lambda$s and $Sigma^-$s) can be found in the pasta phase. The larger the density and the temperature and the smaller the electron fraction the higher the probability that these particles appear but always in very small amounts. $Lambda$-hyperons only occur in the gas and in smaller amounts than would occur if matter were homogeneous, never with abundancies above 10$^{-5}$. The amount of $Sigma^-$ in the gas is at least two orders of magnitude smaller and can be disregarded in practical calculations.
Baryonic matter close to the saturation density is very likely to present complex inhomogeneous structures collectively known under the name of pasta phase. At finite temperature, the different geometric structures are expected to coexist, with poten
In the present paper we investigate the onset of the pasta phase with different parametrisations of the density dependent hadronic model and compare the results with one of the usual parametrisation of the non-linear Walecka model. The influence of t
The formation of complex nonuniform phases of nuclear matter, known as nuclear pasta, is studied with molecular dynamics simulations containing 51200 nucleons. A phenomenological nuclear interaction is used that reproduces the saturation binding ener
Nuclear pasta topology is an essential ingredient to determine transport properties in the inner crust of neutron stars. We perform semi-classical molecular dynamics simulations of nuclear pasta for proton fractions $Y_p=0.30$ and $Y_p=0.40$ near one
In this work the low density regions of nuclear and neutron star matter are studied. The search for the existence of pasta phases in this region is performed within the context of the quark-meson coupling (QMC) model, which incorporates quark degrees