ترغب بنشر مسار تعليمي؟ اضغط هنا

Blocking metal accretion onto population III stars by stellar wind

82   0   0.0 ( 0 )
 نشر من قبل Shuta Tanaka
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Low-mass population III (PopIII) stars of $lesssim 0.8 M_{odot}$ could survive up until the present. Non-detection of low-mass PopIII stars in our Galaxy has already put a stringent constraint on the initial mass function (IMF) of PopIII stars, suggesting that PopIII stars have a top-heavy IMF. On the other hand, some claims that the lack of such stars stems from metal enrichment of their surface by accretion of heavy elements from interstellar medium (ISM). We investigate effects of the stellar wind on the metal accretion onto low-mass PopIII stars because accretion of the local ISM onto the Sun is prevented by the solar wind even for neutrals. The stellar wind and radiation of low-mass PopIII stars are modeled based on knowledge of nearby low-mass stellar systems including our Sun. We find that low-mass PopIII stars traveling across the Galaxy forms the stellar magnetosphere in most of their life. Once the magnetosphere is formed, most of neutral interstellar particles are photoionized before reaching to the stellar surface and are blown away by the wind. Especially, the accretion abundance of iron will be reduced by a factor of $< 10^{-12}$ compared with Bondi-Hoyle-Lyttleton accretion. The metal accretion can enhance iron abundance [Fe/H] only up to $sim -14$. This demonstrates that low-mass PopIII stars remain pristine and will be found as metal free stars and that further searches for them are valuable to constrain the IMF of PopIII stars.

قيم البحث

اقرأ أيضاً

Globular clusters (GCs) are known to harbor multiple stellar populations. To explain these observations Bastian et al. suggested a scenario in which a second population is formed by the accretion of enriched material onto the low-mass stars in the in itial GC population. The idea is that the low-mass, pre-main sequence stars sweep up gas expelled by the massive stars of the same generation into their protoplanetary disc as they move through the GC core. We perform simulations with 2 different smoothed particle hydrodynamics codes to investigate if a low-mass star surrounded by a protoplanetary disc can accrete the amount of enriched material required in this scenario. We focus on the gas loading rate onto the disc and star as well as on the lifetime of the disc. We find that the gas loading rate is a factor of 2 smaller than the geometric rate, because the effective cross section of the disc is smaller than its surface area. The loading rate is consistent for both codes, irrespective of resolution. The disc gains mass in the high resolution runs, but loses angular momentum on a time scale of 10^4 yrs. Two effects determine the loss of (specific) angular momentum in our simulations: 1) continuous ram pressure stripping and 2) accretion of material with no azimuthal angular momentum. Our study and previous work suggest that the former, dominant process is mainly caused by numerical rather than physical effects, while the latter is not. The latter process causes the disc to become more compact, increasing the surface density profile at smaller radii. The disc size is determined in the first place by the ram pressure when the flow first hits the disc. Further evolution is governed by the decrease in the specific angular momentum of the disc. We conclude that the size and lifetime of the disc are probably not sufficient to accrete the amount of mass required in Bastian et al.s scenario.
We present a comprehensive study of massive young stellar objects (YSOs) in the metal-poor galaxy NGC 6822 using IRAC and MIPS data obtained from the {em Spitzer Space Telescope}. We find over 500 new YSO candidates in seven massive star-formation re gions; these sources were selected using six colour-magnitude cuts. Via spectral energy distribution fitting to the data with YSO radiative transfer models we refine this list, identifying 105 high-confidence and 88 medium-confidence YSO candidates. For these sources we constrain their evolutionary state and estimate their physical properties. The majority of our YSO candidates are massive protostars with an accreting envelope in the initial stages of formation. We fit the mass distribution of the Stage I YSOs with a Kroupa initial mass function and determine a global star-formation rate of 0.039 $M_{odot} yr^{-1}$. This is higher than star-formation rate estimates based on integrated UV fluxes. The new YSO candidates are preferentially located in clusters which correspond to seven active high-mass star-formation regions which are strongly correlated with the 8 and 24 $mu$m emission from PAHs and warm dust. This analysis reveals an embedded high-mass star-formation region, Spitzer I, which hosts the highest number of massive YSO candidates in NGC 6822. The properties of Spitzer I suggest it is younger and more active than the other prominent H,{sc ii} and star-formation regions in the galaxy.
Disks of gas accreting onto supermassive black holes are thought to power active galactic nuclei (AGN). Stars may form in gravitationally unstable regions of these disks, or may be captured from nuclear star clusters. Because of the dense gas environ ment, the evolution of such embedded stars can diverge dramatically from those in the interstellar medium. This work extends previous studies of stellar evolution in AGN disks by exploring a variety of ways that accretion onto stars in AGN disks may differ from Bondi accretion. We find that tidal effects from the supermassive black hole significantly alter the evolution of stars in AGN disks, and that our results do not depend critically on assumptions about radiative feedback on the accretion stream. Thus, in addition to depending on $rho/c_s^3$, the fate of stars in AGN disks depends sensitively on the distance to and mass of the supermassive black hole. This affects where in the disk stellar explosions occur, where compact remnants form and potentially merge to produce gravitational waves, and where different types of chemical enrichment take place.
Supermassive stars (SMSs) with $sim10^{4-5}~mathrm{M}_{odot}$ are candidate objects for the origin of supermassive black holes observed at redshift $z$>6. They are supposed to form in primordial-gas clouds that provide the central stars with gas at a high accretion rate, but their growth may be terminated in the middle due to the stellar ionizing radiation if the accretion is intermittent and its quiescent periods are longer than the Kelvin-Helmholtz (KH) timescales at the stellar surfaces. In this paper, we examine the role of the ionizing radiation feedback based on the accretion history in two possible SMS-forming clouds extracted from cosmological simulations, following their evolution with vertically-integrated two-dimensional hydrodynamic simulations with detailed thermal and chemical models. The consistent treatment of the gas thermal evolution is crucial for obtaining the realistic accretion history, as we demonstrate by performing an additional run with a barotropic equation of state, in which the fluctuation of the accretion rate is artificially suppressed. We find that although the accretion becomes intermittent due to the formation of spiral arms and clumps in gravitationally unstable disks, the quiescent periods are always shorter than the KH timescales, implying that SMSs can form without affected by the ionizing radiation.
We present a simulation of the long-term evolution of a Population III supernova remnant in a cosmological minihalo. Employing passive Lagrangian tracer particles, we investigate how chemical stratification and anisotropy in the explosion can affect the abundances of the first low-mass, metal-enriched stars. We find that reverse shock heating can leave the inner mass shells at entropies too high to cool, leading to carbon-enhancement in the re-collapsing gas. This hydrodynamic selection effect could explain the observed incidence of carbon-enhanced metal-poor (CEMP) stars at low metallicity. We further explore how anisotropic ejecta distributions, recently seen in direct numerical simulations of core-collapse explosions, may translate to abundances in metal-poor stars. We find that some of the observed scatter in the Population II abundance ratios can be explained by an incomplete mixing of supernova ejecta, even in the case of only one contributing enrichment event. We demonstrate that the customary hypothesis of fully-mixed ejecta clearly fails if post-explosion hydrodynamics prefers the recycling of some nucleosynthetic products over others. Furthermore, to fully exploit the stellar-archaeological program of constraining the Pop III initial mass function from the observed Pop II abundances, considering these hydrodynamical transport effects is crucial. We discuss applications to the rich chemical structure of ultra-faint dwarf satellite galaxies, to be probed in unprecedented detail with upcoming spectroscopic surveys.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا