ﻻ يوجد ملخص باللغة العربية
We present a method to certify the presence of Bell correlations in experimentally observed statistics, and to obtain new Bell inequalities. Our approach is based on relaxing the conditions defining the set of correlations obeying a local hidden variable model, yielding a convergent hierarchy of semidefinite programs (SdPs). Because the size of these SdPs is independent of the number of parties involved, this technique allows to characterize correlations in many-body systems. As an example, we illustrate our method with the experimental data presented in [Science 352, 441 (2016)]
We describe a simple method to derive high performance semidefinite programming relaxations for optimizations over complex and real operator algebras in finite dimensional Hilbert spaces. The method is very flexible, easy to program and allows the us
A recent experiment reported the first violation of a Bell correlation witness in a many-body system [Science 352, 441 (2016)]. Following discussions in this paper, we address here the question of the statistics required to witness Bell correlated st
We formulate an algorithm to lower bound the fidelity between quantum many-body states only from partial information, such as the one accessible by few-body observables. Our method is especially tailored to permutationally invariant states, but it gi
Finite-size error (FSE), the discrepancy between an observable in a finite system and in the thermodynamic limit, is ubiquitous in numerical simulations of quantum many body systems. Although a rough estimate of these errors can be obtained from a se
We present a quantum algorithm for simulating the dynamics of a first-quantized Hamiltonian in real space based on the truncated Taylor series algorithm. We avoid the possibility of singularities by applying various cutoffs to the system and using a