ترغب بنشر مسار تعليمي؟ اضغط هنا

Long-time existence of nonlinear inhomogeneous compressible elastic waves

68   0   0.0 ( 0 )
 نشر من قبل Silu Yin
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we consider the nonlinear inhomogeneous compressible elastic waves in three spatial dimensions when the density is a small disturbance around a constant state. In homogeneous case, the almost global existence was established by Klainerman-Sideris [1996_CPAM], and global existence was built by Agemi [2000_Invent. Math.] and Sideris [1996_Invent. Math., 2000_Ann. Math.] independently. Here we establish the corresponding almost global and global existence theory in the inhomogeneous case.



قيم البحث

اقرأ أيضاً

In this paper we consider the inhomogeneous nonlinear Schrodinger equation $ipartial_t u +Delta u=K(x)|u|^alpha u,, u(0)=u_0in H^s({mathbb R}^N),, s=0,,1,$ $Ngeq 1,$ $|K(x)|+|x|^s| abla^sK(x)|lesssim |x|^{-b},$ $0<b<min(2,N-2s),$ $0<alpha<{(4-2b)/(N- 2s)}$. We obtain novel results of global existence for oscillating initial data and scattering theory in a weighted $L^2$-space for a new range $alpha_0(b)<alpha<(4-2b)/N$. The value $alpha_0(b)$ is the positive root of $Nalpha^2+(N-2+2b)alpha-4+2b=0,$ which extends the Strauss exponent known for $b=0$. Our results improve the known ones for $K(x)=mu|x|^{-b}$, $muin mathbb{C}$ and apply for more general potentials. In particular, we show the impact of the behavior of the potential at the origin and infinity on the allowed range of $alpha$. Some decay estimates are also established for the defocusing case. To prove the scattering results, we give a new criterion taking into account the potential $K$.
251 - Jianqing Chen , Yue Liu 2010
We study the instability of standing-wave solutions $e^{iomega t}phi_{omega}(x)$ to the inhomogeneous nonlinear Schr{o}dinger equation $$iphi_t=-trianglephi+|x|^2phi-|x|^b|phi|^{p-1}phi, qquad inmathbb{R}^N, $$ where $ b > 0 $ and $ phi_{omega} $ is a ground-state solution. The results of the instability of standing-wave solutions reveal a balance between the frequency $omega $ of wave and the power of nonlinearity $p $ for any fixed $ b > 0. $
120 - Remi Carles 2021
In this paper we analyze the large-time behavior of weak solutions to polytropic fluid models possibly including quantum and capillary effects. Formal a priori estimates show that the density of solutions to these systems should disperse with time. S caling appropriately the system, we prove that, under a reasonable assumption on the decay of energy, the density of weak solutions converges in large times to an unknown profile. In contrast with the isothermal case, we also show that there exists a large variety of asymptotic profiles. We complement the study by providing existence of global-in-time weak solutions satisfying the required decay of energy. As a byproduct of our method, we also obtain results concerning the large-time behavior of solutions to nonlinear Schr{o}dinger equation, allowing the presence of a semi-classical parameter as well as long range nonlinearities.
77 - Chengyang Shao 2020
The paper studies the long time behavior of a system that describes the motion of a piece of elastic membrane driven by surface tension and inner air pressure. The system is a degenerate quasilinear hyperbolic one that involves the mean curvature, an d also includes a damping term that models the dissipative nature of genuine physical systems. With the presence of damping, a small perturbation of the sphere converges exponentially in time to the sphere, and without the damping the evolution that is $varepsilon$-close to the sphere has life span longer than $varepsilon^{-1/6}$. Both results are proved using an improved Nash-Moser-Hormander theorem.
Energy conservations are studied for inhomogeneous incompressible and compressible Euler equations with general pressure law in a torus or a bounded domain. We provide sufficient conditions for a weak solution to conserve the energy. By exploiting a suitable test function, the spatial regularity for the density is only required to be of order $2/3$ in the incompressible case, and of order $1/3$ in the compressible case. When the density is constant, we recover the existing results for classical incompressible Euler equation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا