ترغب بنشر مسار تعليمي؟ اضغط هنا

Role of temperature-dependent spin model parameters in ultra-fast magnetization dynamics

55   0   0.0 ( 0 )
 نشر من قبل Andr\\'as De\\'ak
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In the spirit of multi-scale modelling magnetization dynamics at elevated temperature is often simulated in terms of a spin model where the model parameters are derived from first principles. While these parameters are mostly assumed temperature-independent and thermal properties arise from spin fluctuations only, other scenarios are also possible. Choosing bcc Fe as an example, we investigate the influence of different kinds of model assumptions on ultra-fast spin dynamics, where following a femtosecond laser pulse a sample is demagnetized due to a sudden rise of the electron temperature. While different model assumptions do not affect the simulational results qualitatively, their details do depend on the nature of the modelling.



قيم البحث

اقرأ أيضاً

Temperature-dependent magnetic experiments like pump-probe measurements generated by a pulsed laser have become a crucial technique for switching the magnetization in the picosecond time scale. Apart from having practical implications on the magnetic storage technology, the research field of ultrafast magnetization poses also fundamental physical questions. To correctly describe the time evolution of the atomic magnetic moments under the influence of a temperature-dependent laser pulse, it remains crucial to know if the magnetic material under investigation has magnetic excitation spectrum that is more or less dependent on the magnetic configuration, e.g. as reflected by the temperature dependence of the exchange interactions. In this article, we demonstrate from first-principles theory that the magnetic excitation spectra in Co with fcc, bcc and hcp structures are nearly identical in a wide range of non-collinear magnetic configurations. This is a curious result of a balance between the size of the magnetic moments and the strength of the Heisenberg exchange interactions, that in themselves vary with configuration, but put together in an effective spin Hamiltonian results in a configuration independent effective model. We have used such a Hamiltonian, together with ab-initio calculated damping parameters, to investigate the magnon dispersion relationship as well as the ultrafast magnetisation dynamics of Co and Co-rich CoMn alloys.
Extensive Kerr microscopy studies reveal a strongly temperature dependent domain wall dynamics in Hall-bars made from compressively strained GaMnAs. Depending on the temperature magnetic charging of domain walls is observed and nucleation rates depen d on the Hall-geometry with respect to the crystal axes. Above a critical temperature where a biaxial-to-uniaxial anisotropy transition occurs a drastic increase of nucleation events is observed. Below this temperature, the nucleation of domains tends to be rather insensitive to temperature. This first spatially resolved study of domain wall dynamics in patterned GaMnAs at variable temperatures has important implications for potential single domain magneto-logic devices made from ferromagnetic semiconductors.
The spontaneously formed striped polarization nanodomain configuration of a PbTiO${_3}$/SrTiO${_3}$ superlattice transforms to a uniform polarization state under above-bandgap illumination with a time dependence varying with the intensity of optical illumination and a well-defined threshold intensity. Recovery after the end of illumination occurs over a temperature-dependent period of tens of seconds at room temperature and shorter times at elevated temperatures. A model in which the screening of the depolarization field depends on the population of trapped electrons correctly predicts the observed temperature and optical intensity dependence.
127 - Somnath Jana 2018
Element specific ultrafast demagnetization was studied in Fe$_{1-x}$Ni$_{x}$ alloys, covering the concentration range between $0.1<x<0.9$. For all compositions, we observe a delay in the onset of Ni demagnetization relative to the Fe demagnetization. We find that the delay is correlated to the Curie temperature and hence also the exchange interaction. The temporal evolution of demagnetization is fitted to a magnon diffusion model based on the presupposition of enhanced ultrafast magnon generation in the Fe sublattice. The spin wave stiffness extracted from this model correspond well to known experimental values.
We have studied the magnetization reversal process in FM/AFM bilayer structures through of spin dynamics simulation. It has been observed that the magnetization behavior is different at each branch of the hysteresis loop as well as the exchange-bias behavior. On the descending branch a sudden change of the magnetization is observed while on the ascending branch is observed a bland change of the magnetization. The occurrence of the asymmetry in the hysteresis loop and the variation in the exchange-bias is due to anisotropy which is introduced only in the coupling between ferromagnetic (FM) and antiferromagnetic (AFM) layers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا