ﻻ يوجد ملخص باللغة العربية
Understanding the formation of wide binary systems of very low mass stars (M $le$ 0.1 Msun) is challenging. The most obvious route is via widely separated low-mass collapsing fragments produced through turbulent fragmentation of a molecular core. However, close binaries/multiples from disk fragmentation can also evolve to wide binaries over a few initial crossing times of the stellar cluster through tidal evolution. Finding an isolated low mass wide binary system in the earliest stage of formation, before tidal evolution could occur, would prove that turbulent fragmentation is a viable mechanism for (very) low mass wide binaries. Here we report high resolution ALMA observations of a known wide-separation protostellar binary, showing that each component has a circumstellar disk. The system is too young to have evolved from a close binary and the disk axes are misaligned, providing strong support for the turbulent fragmentation model. Masses of both stars are derived from the Keplerian rotation of the disks; both are very low mass stars.
I discuss the role that disc fragmentation plays in the formation of gas giant and terrestrial planets, and how this relates to the formation of brown dwarfs and low-mass stars, and ultimately to the process of star formation. Protostellar discs may
The population statistics of binary stars are an important output of star formation models. However populations of wide binaries evolve over time due to interactions within a systems birth environment and the unfolding of wide, hierarchical triple sy
We present observations at 7 mm that fully resolve the two circumstellar disks, and a reanalyses of archival observations at 3.5 cm that resolve along their major axes the two ionized jets, of the class I binary protostellar system L1551 NE. We show
We characterize the infall rate onto protostellar systems forming in self-gravitating radiation-hydrodynamic simulations. Using two dimensionless parameters to determine disks susceptability to gravitational fragmentation, we infer limits on protoste
In spite of its importance for the study of star formation at all mass domains, the nearby young sigma Orionis cluster still lacks a comprehensive survey for multiplicity. We try to fill that observational gap by looking for wide resolved binaries wi