ﻻ يوجد ملخص باللغة العربية
Estimates of the Hubble constant, $H_0$, from the distance ladder and the cosmic microwave background (CMB) differ at the $sim$3-$sigma$ level, indicating a potential issue with the standard $Lambda$CDM cosmology. Interpreting this tension correctly requires a model comparison calculation depending on not only the traditional `$n$-$sigma$ mismatch but also the tails of the likelihoods. Determining the form of the tails of the local $H_0$ likelihood is impossible with the standard Gaussian least-squares approximation, as it requires using non-Gaussian distributions to faithfully represent anchor likelihoods and model outliers in the Cepheid and supernova (SN) populations, and simultaneous fitting of the full distance-ladder dataset to correctly propagate uncertainties. We have developed a Bayesian hierarchical model that describes the full distance ladder, from nearby geometric anchors through Cepheids to Hubble-Flow SNe. This model does not rely on any distributions being Gaussian, allowing outliers to be modeled and obviating the need for arbitrary data cuts. Sampling from the $sim$3000-parameter joint posterior using Hamiltonian Monte Carlo, we find $H_0$ = (72.72 $pm$ 1.67) ${rm km,s^{-1},Mpc^{-1}}$ when applied to the outlier-cleaned Riess et al. (2016) data, and ($73.15 pm 1.78$) ${rm km,s^{-1},Mpc^{-1}}$ with SN outliers reintroduced. Our high-fidelity sampling of the low-$H_0$ tail of the distance-ladder likelihood allows us to apply Bayesian model comparison to assess the evidence for deviation from $Lambda$CDM. We set up this comparison to yield a lower limit on the odds of the underlying model being $Lambda$CDM given the distance-ladder and Planck XIII (2016) CMB data. The odds against $Lambda$CDM are at worst 10:1 or 7:1, depending on whether the SNe outliers are cut or modeled, or 60:1 if an approximation to the Planck Int. XLVI (2016) likelihood is used.
In a recent paper, we argued that systematic uncertainties related to the choice of Cepheid color-luminosity calibration may have a large influence on the tension between the Hubble constant as inferred from distances to Type Ia supernovae and the co
We use the largest sample to date of spectroscopic SN Ia distances and redshifts to look for evidence in the Hubble diagram of large scale outflows caused by local voids suggested to exist at z<0.15. Our sample combines data from the Pantheon sample
We investigate a generalized form of the phenomenologically emergent dark energy model, known as generalized emergent dark energy (GEDE), introduced by Li and Shafieloo [Astrophys. J. {bf 902}, 58 (2020)] in light of a series of cosmological probes a
The current cosmological probes have provided a fantastic confirmation of the standard $Lambda$ Cold Dark Matter cosmological model, that has been constrained with unprecedented accuracy. However, with the increase of the experimental sensitivity a f
The current Hubble constant tension is usually presented by comparing constraints on $H_0$ only. However, the post-recombination background cosmic evolution is determined by two parameters in the standard $Lambda$CDM model, the Hubble constant ($H_0$