ترغب بنشر مسار تعليمي؟ اضغط هنا

The SeaQuest Spectrometer at Fermilab

92   0   0.0 ( 0 )
 نشر من قبل Paul E. Reimer
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The SeaQuest spectrometer at Fermilab was designed to detect oppositely-charged pairs of muons (dimuons) produced by interactions between a 120 GeV proton beam and liquid hydrogen, liquid deuterium and solid nuclear targets. The primary physics program uses the Drell-Yan process to probe antiquark distributions in the target nucleon. The spectrometer consists of a target system, two dipole magnets and four detector stations. The upstream magnet is a closed-aperture solid iron magnet which also serves as the beam dump, while the second magnet is an open aperture magnet. Each of the detector stations consists of scintillator hodoscopes and a high-resolution tracking device. The FPGA-based trigger compares the hodoscope signals to a set of pre-programmed roads to determine if the event contains oppositely-signed, high-mass muon pairs.


قيم البحث

اقرأ أيضاً

We analyze the unique capability of the existing SeaQuest experiment at Fermilab to discover well-motivated dark sector physics by measuring displaced electron, photon, and hadron decay signals behind a compact shield. A planned installation of a ref urbished electromagnetic calorimeter could provide powerful new sensitivity to GeV-scale vectors, dark Higgs bosons, scalars, axions, and inelastic and strongly interacting dark matter models. This sensitivity is both comparable and complementary to NA62, SHiP, and FASER. SeaQuests ability to collect data now and over the next few years provides an especially exciting opportunity.
A new spectrometer system was designed and constructed at the secondary beam line K1.8BR in the hadron hall of J-PARC to investigate $bar K N$ interactions and $bar K$-nuclear bound systems. The spectrometer consists of a high precision beam line spe ctrometer, a liquid $^3$He/$^4$He/D$_2$ target system, a Cylindrical Detector System that surrounds the target to detect the decay particles from the target region, and a neutron time-of-flight counter array located $sim$15 m downstream from the target position. Details of the design, construction, and performance of the detector components are described.
The electron spectrometer, SPEDE, has been developed and will be employed in conjunction with the Miniball spectrometer at the HIE-ISOLDE facility, CERN. SPEDE allows for direct measurement of internal conversion electrons emitted in-flight, without employing magnetic fields to transport or momentum filter the electrons. Together with the Miniball spectrometer, it enables simultaneous observation of {gamma} rays and conversion electrons in Coulomb-excitation experiments using radioactive ion beams.
A new data acquisition system for the high resolution magnetic spectrometer Lintott at the superconducting Darmstadt electron linear accelerator S-DALINAC was developed. It allows inclusive and coincidence electron scattering experiments with event rates up to 10 kHz.
There is a long standing discrepancy between the Standard Model prediction for the muon g-2 and the value measured by the Brookhaven E821 Experiment. At present the discrepancy stands at about three standard deviations, with a comparable accuracy bet ween experiment and theory. Two new proposals -- at Fermilab and J-PARC -- plan to improve the experimental uncertainty by a factor of 4, and it is expected that there will be a significant reduction in the uncertainty of the Standard Model prediction. I will review the status of the planned experiment at Fermilab, E989, which will analyse 21 times more muons than the BNL experiment and discuss how the systematic uncertainty will be reduced by a factor of 3 such that a precision of 0.14 ppm can be achieved.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا