ﻻ يوجد ملخص باللغة العربية
We evaluate the optical/near-infrared (OIR) color variability of 3C 279 in both gamma-ray flaring and non-flaring states over 7-year timescales using the Small and Medium Aperture Research Telescope System (SMARTS) in Cerro Tololo, Chile and gamma-ray fluxes obtained from the Fermi Gamma-ray Space Telescope. This observing strategy differs from previous blazar color variability studies in two key ways: 1) the reported color variability is assessed across optical through near-infrared wavelengths, and 2) the color variability is assessed over timescales significantly longer than an individual flare or ground-based observing season. We highlight 3C 279 because of its complex color variability, which is difficult to reconcile with the simple redder when brighter behavior often associated with Flat Spectrum Radio Quasar (FSRQ) color variability. We suggest that the observed OIR color changes depend on a combination of the jet and disk emission. We parameterize this behavior in terms of a single variable, $zeta^m_n$, representing a smooth transition from disk-dominated, to a mixed contribution, to a jet-dominated system, which provides an explanation of the long-term OIR color variability in the same blazar over time. This suggests a general scheme that could apply to OIR color variability in other blazars.
We present long term optical and near infrared flux variability analysis of 37 blazars detected in the $gamma$-ray band by the {it Fermi Gamma-Ray Space Telescope}. Among them, 30 are flat spectrum radio quasars (FSRQs) and 7 are BL Lac objects (BL L
The long-term optical, X-ray and $gamma$-ray data of blazar 3C 279 have been compiled from $Swift$-XRT, $RXTE$ PCA, $Fermi$-LAT, SMARTS and literature. The source exhibits strong variability on long time scales. Since 1980s to now, the optical $R$ ba
Optical observations of a sample of 12 $gamma$-ray bright blazars from four optical data archives, AAVSO, SMARTS, Catalina, and Steward Observatory, are compiled to create densely sampled light curves spanning more than a decade. As a part of the bla
We have monitored the flat spectrum radio quasar, 3C 279, in the optical $B$, $V$, $R$ and $I$ passbands from 2018 February to 2018 July for 24 nights, with a total of 716 frames, to study flux, colour and spectral variability on diverse timescales.
Over the past few years, several occasions of large, continuous rotations of the electric vector position angle (EVPA) of linearly polarized optical emission from blazars have been reported. These events are often coincident with high energy gamma-ra