ترغب بنشر مسار تعليمي؟ اضغط هنا

Exact diagonalization of cubic lattice models in commensurate Abelian magnetic fluxes and translational invariant non-Abelian potentials

166   0   0.0 ( 0 )
 نشر من قبل Michele Burrello
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a general analytical formalism to determine the energy spectrum of a quantum particle in a cubic lattice subject to translationally invariant commensurate magnetic fluxes and in the presence of a general space-independent non-Abelian gauge potential. We first review and analyze the case of purely Abelian potentials, showing also that the so-called Hasegawa gauge yields a decomposition of the Hamiltonian into sub-matrices having minimal dimension. Explicit expressions for such matrices are derived, also for general anisotropic fluxes. Later on, we show that the introduction of a translational invariant non-Abelian coupling for multi-component spinors does not affect the dimension of the minimal Hamiltonian blocks, nor the dimension of the magnetic Brillouin zone. General formulas are presented for the U(2) case and explicit examples are investigated involving $pi$ and $2pi/3$ magnetic fluxes. Finally, we numerically study the effect of random flux perturbations.

قيم البحث

اقرأ أيضاً

The study of the properties of quantum particles in a periodic potential subject to a magnetic field is an active area of research both in physics and mathematics; it has been and it is still deeply investigated. In this review we discuss how to impl ement and describe tunable Abelian magnetic fields in a system of ultracold atoms in optical lattices. After discussing two of the main experimental schemes for the physical realization of synthetic gauge potentials in ultracold set-ups, we study cubic lattice tight-binding models with commensurate flux. We finally examine applications of gauge potentials in one-dimensional rings.
159 - M. Burrello , I.C. Fulga , E. Alba 2013
We analyze a tight-binding model of ultracold fermions loaded in an optical square lattice and subjected to a synthetic non-Abelian gauge potential featuring both a magnetic field and a translationally invariant SU(2) term. We consider in particular the effect of broken time-reversal symmetry and its role in driving non-trivial topological phase transitions. By varying the spin-orbit coupling parameters, we find both a semimetal/insulator phase transition and a topological phase transition between insulating phases with different numbers of edge states. The spin is not a conserved quantity of the system and the topological phase transitions can be detected by analyzing its polarization in time of flight images, providing a clear diagnostic for the characterization of the topological phases through the partial entanglement between spin and lattice degrees of freedom.
Nowadays it is experimentally feasible to create artificial, and in particular, non-Abelian gauge potentials for ultracold atoms trapped in optical lattices. Motivated by this fact, we investigate the fundamental properties of an ultracold Fermi gas in a non-Abelian U(2) gauge potential characterized by a constant Wilson loop. Under this specific condition, the energy spectrum exhibits a robust band structure with large gaps and reveals a new fractal figure. The transverse conductivity is related to topological invariants and is shown to be quantized when the Fermi energy lies inside a gap of the spectrum. We demonstrate that the analogue of the integer quantum Hall effect for neutral atoms survives the non-Abelian coupling and leads to a striking fractal phase diagram. Moreover, this coupling induces an anomalous Hall effect as observed in graphene.
We discuss a general framework for the realization of a family of abelian lattice gauge theories, i.e., link models or gauge magnets, in optical lattices. We analyze the properties of these models that make them suitable to quantum simulations. Withi n this class, we study in detail the phases of a U(1)-invariant lattice gauge theory in 2+1 dimensions originally proposed by Orland. By using exact diagonalization, we extract the low-energy states for small lattices, up to 4x4. We confirm that the model has two phases, with the confined entangled one characterized by strings wrapping around the whole lattice. We explain how to study larger lattices by using either tensor network techniques or digital quantum simulations with Rydberg atoms loaded in optical lattices where we discuss in detail a protocol for the preparation of the ground state. We also comment on the relation between standard compact U(1) LGT and the model considered.
Gauge-invariance is a mathematical concept that has profound implications in Physics---as it provides the justification of the fundamental interactions. It was recently adapted to the Cellular Automaton (CA) framework, in a restricted case. In this p aper, this treatment is generalized to non-abelian gauge-invariance, including the notions of gauge-equivalent theories and gauge-invariants of configurations
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا