ترغب بنشر مسار تعليمي؟ اضغط هنا

Light sterile neutrinos, dark matter, and new resonances in a $U(1)$ extension of the MSSM

135   0   0.0 ( 0 )
 نشر من قبل George Lazarides
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present $psi$MSSM, a model based on a $U(1)_{psi}$ extension of the minimal supersymmetric standard model. The gauge symmetry $U(1)_{psi}$, also known as $U(1)_N$, is a linear combination of the $U(1)_chi$ and $U(1)_psi$ subgroups of $E_6$. The model predicts the existence of three sterile neutrinos with masses $lesssim 0.1~{rm eV}$, if the $U(1)_{psi}$ breaking scale is of order 10 TeV. Their contribution to the effective number of neutrinos at nucleosynthesis is $Delta N_{ u}simeq 0.29$. The model can provide a variety of possible cold dark matter candidates including the lightest sterile sneutrino. If the $U(1)_{psi}$ breaking scale is increased to $10^3~{rm TeV}$, the sterile neutrinos, which are stable on account of a $Z_2$ symmetry, become viable warm dark matter candidates. The observed value of the standard model Higgs boson mass can be obtained with relatively light stop quarks thanks to the D-term contribution from $U(1)_{psi}$. The model predicts diquark and diphoton resonances which may be found at an updated LHC. The well-known $mu$ problem is resolved and the observed baryon asymmetry of the universe can be generated via leptogenesis. The breaking of $U(1)_{psi}$ produces superconducting strings that may be present in our galaxy. A $U(1)$ R symmetry plays a key role in keeping the proton stable and providing the light sterile neutrinos.

قيم البحث

اقرأ أيضاً

73 - Brian Shuve , Itay Yavin 2014
We show that the existence of new, light gauge interactions coupled to Standard Model (SM) neutrinos give rise to an abundance of sterile neutrinos through the sterile neutrinos mixing with the SM. Specifically, in the mass range of MeV-GeV and coupl ing of $g sim 10^{-6} - 10^{-2}$, the decay of this new vector boson in the early universe produces a sufficient quantity of sterile neutrinos to account for the observed dark matter abundance. Interestingly, this can be achieved within a natural extension of the SM gauge group, such as a gauged $L_mu-L_tau$ number, without any tree-level coupling between the new vector boson and the sterile neutrino states. Such new leptonic interactions might also be at the origin of the well-known discrepancy associated with the anomalous magnetic moment of the muon.
117 - Yi-Lei Tang , Shou-hua Zhu 2016
In this paper, we calculate the relic abundance of the dark matter particles when they can annihilate into sterile neutrinos with the mass $lesssim 100 text{ GeV}$ in a simple model. Unlike the usual standard calculations, the sterile neutrino may fa ll out of the thermal equilibrium with the thermal bath before the dark matter freezes out. In such a case, if the Yukawa coupling $y_N$ between the Higgs and the sterile neutrino is small, this process gives rise to a larger $Omega_{text{DM}} h^2$ so we need a larger coupling between the dark matter and the sterile neutrino for a correct relic abundance.
We study the phenomenology of a keV sterile neutrino in a supersymmetric model with $U(1)_R-$ lepton number in the light of a very recent observation of an X-ray line signal at around 3.5 keV, detected in the X-ray spectra of Andromeda galaxy and var ious galaxy clusters including the Perseus galaxy cluster. This model not only provides a small tree level mass to one of the active neutrinos but also renders a suitable warm dark matter candidate in the form of a sterile neutrino with negligible active-sterile mixing. Light neutrino masses and mixing can be explained once one-loop radiative corrections are taken into account. The scalar sector of this model can accommodate a Higgs boson with a mass of $sim$ 125 GeV. In this model gravitino is the lightest supersymmetric particle (LSP) and we also study the cosmological implications of this light gravitino with mass $sim mathcal O$(GeV).
We have recently examined a large number of points in the parameter space of the phenomenological MSSM, the 19-dimensional parameter space of the CP-conserving MSSM with Minimal Flavor Violation. We determined whether each of these points satisfied e xisting experimental and theoretical constraints. This analysis provides insight into general features of the MSSM without reference to a particular SUSY breaking scenario or any other assumptions at the GUT scale. This study opens up new possibilities for SUSY phenomenology both in colliders and in astrophysical experiments. Here we shall discuss the implications of this analysis relevant to the study of dark matter.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا