ﻻ يوجد ملخص باللغة العربية
We present $psi$MSSM, a model based on a $U(1)_{psi}$ extension of the minimal supersymmetric standard model. The gauge symmetry $U(1)_{psi}$, also known as $U(1)_N$, is a linear combination of the $U(1)_chi$ and $U(1)_psi$ subgroups of $E_6$. The model predicts the existence of three sterile neutrinos with masses $lesssim 0.1~{rm eV}$, if the $U(1)_{psi}$ breaking scale is of order 10 TeV. Their contribution to the effective number of neutrinos at nucleosynthesis is $Delta N_{ u}simeq 0.29$. The model can provide a variety of possible cold dark matter candidates including the lightest sterile sneutrino. If the $U(1)_{psi}$ breaking scale is increased to $10^3~{rm TeV}$, the sterile neutrinos, which are stable on account of a $Z_2$ symmetry, become viable warm dark matter candidates. The observed value of the standard model Higgs boson mass can be obtained with relatively light stop quarks thanks to the D-term contribution from $U(1)_{psi}$. The model predicts diquark and diphoton resonances which may be found at an updated LHC. The well-known $mu$ problem is resolved and the observed baryon asymmetry of the universe can be generated via leptogenesis. The breaking of $U(1)_{psi}$ produces superconducting strings that may be present in our galaxy. A $U(1)$ R symmetry plays a key role in keeping the proton stable and providing the light sterile neutrinos.
We show that the existence of new, light gauge interactions coupled to Standard Model (SM) neutrinos give rise to an abundance of sterile neutrinos through the sterile neutrinos mixing with the SM. Specifically, in the mass range of MeV-GeV and coupl
In this paper, we calculate the relic abundance of the dark matter particles when they can annihilate into sterile neutrinos with the mass $lesssim 100 text{ GeV}$ in a simple model. Unlike the usual standard calculations, the sterile neutrino may fa
We study the phenomenology of a keV sterile neutrino in a supersymmetric model with $U(1)_R-$ lepton number in the light of a very recent observation of an X-ray line signal at around 3.5 keV, detected in the X-ray spectra of Andromeda galaxy and var
This white paper addresses the hypothesis of light sterile neutrinos based on recent anomalies observed in neutrino experiments and the latest astrophysical data.
We have recently examined a large number of points in the parameter space of the phenomenological MSSM, the 19-dimensional parameter space of the CP-conserving MSSM with Minimal Flavor Violation. We determined whether each of these points satisfied e